Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stem cells provide clues to cancer spread

Scientists have made an important discovery in understanding how cancers spread in what could lead to new ways of beating the disease.

The University of Manchester study used embryonic stem (ES) cells to investigate how some tumours are able to migrate to other parts of the body, which makes the treatment of cancer much more difficult.

Dr Chris Ward, in the University’s Faculty of Medical and Human Sciences, studied a crucial change that makes cancer cells able to start moving and spread into other tissues.

Normal cells, as well as early cancer cells, are called epithelial cells because they bind tightly to each other forming stable layers of tissue. However, as a tumour becomes more advanced some of the cells change to become ‘mesenchymal’.

Mesenchymal cells do not bind to each other, forming more disorganised tissues in which the cells can move around. Since this crucial change – known as the epithelial-mesenchymal transition – was first observed in the early embryo, Dr Ward theorised that embryonic stem cells might undergo a similar process.

Dr Ward, whose findings are published in the journal Molecular Biology of the Cell, said: “We have shown that ES cells spontaneously change in a manner that is remarkably similar to the epithelial-mesenchymal transition. They lose the proteins that cells use to bind to each other and have other protein alterations that are characteristic of spreading cancer cells.

“Since ES cells can be grown in the laboratory, where they keep the characteristics of the cells in the early embryo, they can be studied in detail. By studying these ES cells we have already identified a novel component of this transition process. We expect the use of ES cells will lead to the identification of other unknown factors involved in cancer cell spread, hopefully leading to new avenues for cancer therapy.”

Previously, it has been quite difficult to study this crucial transition in cancer cells as it only happened to a limited number of cells in a growing tumour. The team’s discovery that it happens spontaneously in ES cells means that it can be studied more easily in the laboratory.

“Understanding how cancer cells start to spread is tremendously important for cancer research; tumours that do not spread are rarely, if ever, dangerous,” said Dr Ward, who leads the stem cell research group in the School of Dentistry.

“It is the ability of tumours to invade into other tissues and spread around the body that makes them so dangerous. Finding out more about the mechanism that controls the spread of cancer cells will help us find new treatments that can prevent tumours spreading and make them essentially harmless.”

The study, which was funded by the Association for International Cancer Research (AICR) and also involved the University’s immunology group at the Paterson Institute for Cancer Research (PICR), used embryonic stem cells to investigate how the protein E-cadherin stopped cells from migrating during normal growth.

The team found that, as well as helping cells stick together, E-cadherin also blocked the action of another protein known to increase the mobility of cells. This important dual function of E-cadherin opens up the potential for new targets to prevent tumours from spreading.

Derek Napier, Chief Executive of AICR, said: “Dr Ward’s work will open the door to a detailed dissection of the process that makes cancers spread around the body.

“Scientific research occasionally makes sudden leaps forward when a new way of investigating something is discovered. We predict that this will lead to a huge growth in our understanding of cancer spread and the development on several new approaches to stopping it.”

Aeron Haworth | alfa
Further information:

Further reports about: Protein cancer cells embryonic stem cell transition tumour

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>