Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells provide clues to cancer spread

23.05.2007
Scientists have made an important discovery in understanding how cancers spread in what could lead to new ways of beating the disease.

The University of Manchester study used embryonic stem (ES) cells to investigate how some tumours are able to migrate to other parts of the body, which makes the treatment of cancer much more difficult.

Dr Chris Ward, in the University’s Faculty of Medical and Human Sciences, studied a crucial change that makes cancer cells able to start moving and spread into other tissues.

Normal cells, as well as early cancer cells, are called epithelial cells because they bind tightly to each other forming stable layers of tissue. However, as a tumour becomes more advanced some of the cells change to become ‘mesenchymal’.

Mesenchymal cells do not bind to each other, forming more disorganised tissues in which the cells can move around. Since this crucial change – known as the epithelial-mesenchymal transition – was first observed in the early embryo, Dr Ward theorised that embryonic stem cells might undergo a similar process.

Dr Ward, whose findings are published in the journal Molecular Biology of the Cell, said: “We have shown that ES cells spontaneously change in a manner that is remarkably similar to the epithelial-mesenchymal transition. They lose the proteins that cells use to bind to each other and have other protein alterations that are characteristic of spreading cancer cells.

“Since ES cells can be grown in the laboratory, where they keep the characteristics of the cells in the early embryo, they can be studied in detail. By studying these ES cells we have already identified a novel component of this transition process. We expect the use of ES cells will lead to the identification of other unknown factors involved in cancer cell spread, hopefully leading to new avenues for cancer therapy.”

Previously, it has been quite difficult to study this crucial transition in cancer cells as it only happened to a limited number of cells in a growing tumour. The team’s discovery that it happens spontaneously in ES cells means that it can be studied more easily in the laboratory.

“Understanding how cancer cells start to spread is tremendously important for cancer research; tumours that do not spread are rarely, if ever, dangerous,” said Dr Ward, who leads the stem cell research group in the School of Dentistry.

“It is the ability of tumours to invade into other tissues and spread around the body that makes them so dangerous. Finding out more about the mechanism that controls the spread of cancer cells will help us find new treatments that can prevent tumours spreading and make them essentially harmless.”

The study, which was funded by the Association for International Cancer Research (AICR) and also involved the University’s immunology group at the Paterson Institute for Cancer Research (PICR), used embryonic stem cells to investigate how the protein E-cadherin stopped cells from migrating during normal growth.

The team found that, as well as helping cells stick together, E-cadherin also blocked the action of another protein known to increase the mobility of cells. This important dual function of E-cadherin opens up the potential for new targets to prevent tumours from spreading.

Derek Napier, Chief Executive of AICR, said: “Dr Ward’s work will open the door to a detailed dissection of the process that makes cancers spread around the body.

“Scientific research occasionally makes sudden leaps forward when a new way of investigating something is discovered. We predict that this will lead to a huge growth in our understanding of cancer spread and the development on several new approaches to stopping it.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

Further reports about: Protein cancer cells embryonic stem cell transition tumour

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>