Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells provide clues to cancer spread

23.05.2007
Scientists have made an important discovery in understanding how cancers spread in what could lead to new ways of beating the disease.

The University of Manchester study used embryonic stem (ES) cells to investigate how some tumours are able to migrate to other parts of the body, which makes the treatment of cancer much more difficult.

Dr Chris Ward, in the University’s Faculty of Medical and Human Sciences, studied a crucial change that makes cancer cells able to start moving and spread into other tissues.

Normal cells, as well as early cancer cells, are called epithelial cells because they bind tightly to each other forming stable layers of tissue. However, as a tumour becomes more advanced some of the cells change to become ‘mesenchymal’.

Mesenchymal cells do not bind to each other, forming more disorganised tissues in which the cells can move around. Since this crucial change – known as the epithelial-mesenchymal transition – was first observed in the early embryo, Dr Ward theorised that embryonic stem cells might undergo a similar process.

Dr Ward, whose findings are published in the journal Molecular Biology of the Cell, said: “We have shown that ES cells spontaneously change in a manner that is remarkably similar to the epithelial-mesenchymal transition. They lose the proteins that cells use to bind to each other and have other protein alterations that are characteristic of spreading cancer cells.

“Since ES cells can be grown in the laboratory, where they keep the characteristics of the cells in the early embryo, they can be studied in detail. By studying these ES cells we have already identified a novel component of this transition process. We expect the use of ES cells will lead to the identification of other unknown factors involved in cancer cell spread, hopefully leading to new avenues for cancer therapy.”

Previously, it has been quite difficult to study this crucial transition in cancer cells as it only happened to a limited number of cells in a growing tumour. The team’s discovery that it happens spontaneously in ES cells means that it can be studied more easily in the laboratory.

“Understanding how cancer cells start to spread is tremendously important for cancer research; tumours that do not spread are rarely, if ever, dangerous,” said Dr Ward, who leads the stem cell research group in the School of Dentistry.

“It is the ability of tumours to invade into other tissues and spread around the body that makes them so dangerous. Finding out more about the mechanism that controls the spread of cancer cells will help us find new treatments that can prevent tumours spreading and make them essentially harmless.”

The study, which was funded by the Association for International Cancer Research (AICR) and also involved the University’s immunology group at the Paterson Institute for Cancer Research (PICR), used embryonic stem cells to investigate how the protein E-cadherin stopped cells from migrating during normal growth.

The team found that, as well as helping cells stick together, E-cadherin also blocked the action of another protein known to increase the mobility of cells. This important dual function of E-cadherin opens up the potential for new targets to prevent tumours from spreading.

Derek Napier, Chief Executive of AICR, said: “Dr Ward’s work will open the door to a detailed dissection of the process that makes cancers spread around the body.

“Scientific research occasionally makes sudden leaps forward when a new way of investigating something is discovered. We predict that this will lead to a huge growth in our understanding of cancer spread and the development on several new approaches to stopping it.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

Further reports about: Protein cancer cells embryonic stem cell transition tumour

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>