Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted Nanoparticles Incorporating siRNA Offer Promise for Cancer Treatment

22.05.2007
The use of targeted nanoparticles offers promising techniques for cancer treatment. Researchers in the laboratory of Mark E. Davis at the California Institute of Technology have been using small interfering RNA (siRNA), sometimes known as silencing RNA, to “silence” specific genes that are implicated in certain malignancies.

One of the primary challenges associated with this type of therapy is delivering the therapeutic agent into the body and then to the tumor in a safe and effective manner. By using targeted nanoparticles, researchers have demonstrated that systemically delivered siRNA can slow the growth of tumors in mice without eliciting the toxicities often associated with cancer therapies. The results of this research are being presented this week at the NSTI Nanotech 2007 Conference in Santa Clara, CA.

The Caltech researchers have incorporated siRNA into nanoparticles that are formed completely by self-assembly, characterized the behavior of these nanoparticles and studied their safety and efficacy in mice.

Using extensive physicochemical and biological characterization, the investigators are able to estimate the composition of individual nanoparticles and to correlate the nanoparticle structure with its biological function. This quantitative approach provides unique insights into the design of more effective nanoparticle carriers.

... more about:
»NSTI »RNA »Santa »efficacy »siRNA

According to the lead author of the study, Derek W. Bartlett, “Safe and effective delivery remains perhaps the greatest impediment to the clinical realization of small interfering RNA (siRNA) in cancer therapy. Formation of siRNA nanoparticles using cyclodextrin-containing polycations is one of the most promising strategies for systemic siRNA delivery, and such nanoparticles are expected to enter Phase I clinical trials by late 2007. Our most recent work examines the impact of various dosing schedules and surface modifications on the efficacy of these siRNA nanoparticles in preclinical cancer models. By combining the experimental data with a mathematical model of siRNA-mediated gene silencing, we illustrate several practical considerations that we believe will be directly relevant to the clinical application of siRNA-based therapeutics in cancer therapy.”

The presentation is “Characterization and in vivo efficacy of targeted nanoparticles for systemic siRNA delivery to tumors” by D.W. Bartlett and M.E. Davis, from the California Institute of Technology. It will be presented at the NSTI Nanotech 2007 conference in Santa Clara, CA on May 21, 2007, 4:40 PM, Great America 3, Santa Clara Convention Center.

The mission of Nanomedicine: Nanotechnology, Biology & Medicine, the international peer-reviewed journal published by Elsevier, is to communicate new nanotechnology findings, and encourage collaboration among the diverse disciplines represented in nanomedicine. Because this closely mirrors NSTI’s charter to seek the “promotion and integration of nano and other advanced technologies through education, technology and business development,” Elsevier is pleased to be working in collaboration with NSTI to bring this presentation to the attention of the scientific community.

Jami Walker | alfa
Further information:
http://www.elsevier.com

Further reports about: NSTI RNA Santa efficacy siRNA

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>