Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted Nanoparticles Incorporating siRNA Offer Promise for Cancer Treatment

22.05.2007
The use of targeted nanoparticles offers promising techniques for cancer treatment. Researchers in the laboratory of Mark E. Davis at the California Institute of Technology have been using small interfering RNA (siRNA), sometimes known as silencing RNA, to “silence” specific genes that are implicated in certain malignancies.

One of the primary challenges associated with this type of therapy is delivering the therapeutic agent into the body and then to the tumor in a safe and effective manner. By using targeted nanoparticles, researchers have demonstrated that systemically delivered siRNA can slow the growth of tumors in mice without eliciting the toxicities often associated with cancer therapies. The results of this research are being presented this week at the NSTI Nanotech 2007 Conference in Santa Clara, CA.

The Caltech researchers have incorporated siRNA into nanoparticles that are formed completely by self-assembly, characterized the behavior of these nanoparticles and studied their safety and efficacy in mice.

Using extensive physicochemical and biological characterization, the investigators are able to estimate the composition of individual nanoparticles and to correlate the nanoparticle structure with its biological function. This quantitative approach provides unique insights into the design of more effective nanoparticle carriers.

... more about:
»NSTI »RNA »Santa »efficacy »siRNA

According to the lead author of the study, Derek W. Bartlett, “Safe and effective delivery remains perhaps the greatest impediment to the clinical realization of small interfering RNA (siRNA) in cancer therapy. Formation of siRNA nanoparticles using cyclodextrin-containing polycations is one of the most promising strategies for systemic siRNA delivery, and such nanoparticles are expected to enter Phase I clinical trials by late 2007. Our most recent work examines the impact of various dosing schedules and surface modifications on the efficacy of these siRNA nanoparticles in preclinical cancer models. By combining the experimental data with a mathematical model of siRNA-mediated gene silencing, we illustrate several practical considerations that we believe will be directly relevant to the clinical application of siRNA-based therapeutics in cancer therapy.”

The presentation is “Characterization and in vivo efficacy of targeted nanoparticles for systemic siRNA delivery to tumors” by D.W. Bartlett and M.E. Davis, from the California Institute of Technology. It will be presented at the NSTI Nanotech 2007 conference in Santa Clara, CA on May 21, 2007, 4:40 PM, Great America 3, Santa Clara Convention Center.

The mission of Nanomedicine: Nanotechnology, Biology & Medicine, the international peer-reviewed journal published by Elsevier, is to communicate new nanotechnology findings, and encourage collaboration among the diverse disciplines represented in nanomedicine. Because this closely mirrors NSTI’s charter to seek the “promotion and integration of nano and other advanced technologies through education, technology and business development,” Elsevier is pleased to be working in collaboration with NSTI to bring this presentation to the attention of the scientific community.

Jami Walker | alfa
Further information:
http://www.elsevier.com

Further reports about: NSTI RNA Santa efficacy siRNA

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>