Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of chemical profiles for infectious diarrhoea

22.05.2007
Academics from the Universities of the West of England and Bristol have found that faeces from healthy people and those with infectious diarrhoea differ significantly in their chemical composition and could be used to diagnose quickly diseases such as Clostridium difficile (C. Diff.).

It is hoped the discovery of these chemical profiles will lead to the development of an electronic device capable of rapid diagnosis at the bedside, saving both time and money.

The study has just been published online in The FASEB Journal. It is the result of a collaboration between Dr Chris Probert, Consultant and Reader in Gastroenterology at Bristol University and Professor Norman Ratcliffe at the University of the West of England.

For a long time it has been known that stools have distinctive and different odours if there is an infection. What the researchers have done is to take this 'knowledge' a step further by analysing the odour of faeces from healthy donors and comparing it with patients with gastrointestional disease to see if precise chemical profiles can be established.

The researchers found that the faeces of patients with ulcerative colitis, Campylobacter jejuni and Clostridium difficile (C. Diff.) all had significantly different chemical compositions.

Dr Chris Probert said: "The discovery of chemical profiles is a major step forward in the diagnosis and treatment of people with gastrointestinal disease. Early treatment of Clostridium difficile means patients have a much better chance of survival and fewer complications. However, at present the average length of time taken to diagnose the condition is eight days. "

The next stage of the academics' research is to develop a prototype rapid diagnosis device able to be operated by healthcare staff at all levels.

Professor Norman Ratcliffe, of UWE's Centre for Research in Analytical, Materials and Sensors Science, said: "There are numerous different kinds of infection that cause diarrhoea and a speedy diagnosis would lead to more appropriate use of antibiotics. A rapid diagnosis device has the potential to save lives and reduce the cost burden to the NHS. Early isolation of infectious patients would reduce hospital outbreaks leading to fewer ward/hospital closures."

Two of the most common types of infectious diarrhoea are Campylobacter jejuni and Clostridium difficile (C. Diff.). Although less well known than the MRSA superbug, C. Diff. is just as serious, and affects more than 50,000 people each year in England and Wales at a cost to the NHS of around £60 million.

Dr Chris Probert added: "There is a huge potential for a rapid diagnosis device in the UK - 30,000 samples are tested in Bristol alone each year. However, the device could be adapted for use in developing countries where 7,000 children die as a result of diarrhoea every day. Our next aim is to produce a prototype device capable of diagnosing in any healthcare setting."

"Rapid diagnosis of intestinal illnesses is as useful a contribution to public health as one could imagine," said Gerald Weissman, M.D., editor-in-chief of the FASEB Journal. "The method developed by Garner et al is not only useful, but also imaginative."

Last year the team were awarded £353,000 by the Wellcome Trust under their University Translation Award scheme and this study is funded by the grant, which is part of a three-year project.

Lesley Drake | alfa
Further information:
http://www.uwe.ac.uk

Further reports about: Clostridium Diff Infectious diagnosis diarrhoea difficile

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>