Caspase-14 protects our skin against UVB and dehydration

VIB researchers connected to Ghent University have demonstrated that the caspase-14 protein – whose function has been unknown up to now – not only plays a role in maintaining the balance of moisture in the skin but also offers protection against UVB rays. Future strategies that increase the production of caspase-14 will open new possibilities for fortifying the skin as a barrier against all kinds of stress.

Sunbathing and the pernicious consequences for our skin

Sunlight is needed for the development of our bodies and minds. Still, we should not expose ourselves to it too often. The UV index provides an indication of the true intensity of the sun’s rays and the risks that go along with them.

UV rays cause functional alterations in the most important components of our skin: the keratinocytes. In addition to causing normal sunburn and suppressing our immune responses, UVB damages the DNA in our cells, which can lead to cancer. In the last 15 years, the number of new cases of melanoma (the most dangerous skin cancer in Belgium) has practically doubled to 1500 cases per year.

Caspase-14

Caspases are proteins that are involved in inflammation reactions and in programmed cell death or apoptosis. Apoptosis is important in all stages of life. During embryonal development, for example, apoptosis ensures that undesirable or outmoded tissues disappear. In the mid-1990s, Peter Vandenabeele and his colleagues were able to isolate 9 caspase family members in mice. The properties and substrates of a number of caspases are already known. However, caspase-14 is a maverick in that it is found very specifically in the skin and is activated during the last stage of skin cell maturation. Due to the action of caspase-14, the outer epidermis of our skin contains dead cells that are released as flakes of skin.

Mice as model

To investigate the function of caspase-14, Geertrui Denecker and colleagues, under the direction of Wim Declercq and Peter Vandenabeele, developed knock-out mice that could no longer produce the protein. The shiny and lichenified skin of mice without caspase-14 is a sign that the composition of the skin’s epidermis has been altered. The lack of caspase-14 causes defects in the processing of a protein that plays a major role in maintaining the skin’s structure and balance of moisture, which can explain the skin’s dehydration.

But one of our skin’s most important functions is to protect us against UVB radiation. The researchers in Ghent have found that the filtering action of the epidermis of mice without caspase-14 decreases dramatically.

The skin as barrier

The absence of caspase-14 has very harmful effects on the skin’s protective barrier function, which results in loss of water and diminished protection against UVB. This research sheds light on a portion of the mechanisms that operate in the skin’s epidermis. The identification of molecules involved in caspase-14 dependent processes could well be important to the pharmaceutical industry, which is always seeking agents that prevent sunburn and ageing of the skin.

Media Contact

Ann Van Gysel alfa

More Information:

http://www.vib.be

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Partners & Sponsors