Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomes of Genghis Khan

21.05.2007
Approximately 16 million Asian men can consider themselves to be Genghis Khan’s descendants, but there are no such men among the Russian population. These conclusions were made by Russian geneticists and their Polish colleagues, who had investigated Y-chromosomes with representatives of 18 nations of Northern Eurasia.

Discussions on Genghis Khan’s offsprings began about three years ago when foreign researchers (Zerijal and joint authors) published findings on Y-chromosome variability with 2,123 inhabitants of different regions in Asia, except for its Russian part. The researchers discovered a whole cluster of closely-related lines, which fanned from a common ancestor.

The investigations proved that this cluster originated from Mongolia about a thousand years ago, and its distribution coincided surprisingly with the boundaries occupied by the Mongol Empire at that time. Based on this coincidence, the researchers have assumed that the Y-chromosomes described by them belonged to Genghis Khan and his offsprings. Representatives of the Genghiside dynasty, due to their social status, had a lot of opportunities to leave posterity, and, to all appearances, broadly enjoyed their advantages. Russian and Polish researchers continued the search for the Genghisides in practically non-investigated territories of Northern Eurasia.

The Mongolian State was established in 1206 as a result of Mongolian tribes consolidation by Genghis Khan, it broadened significantly in the future having absorbed the territory of China (Great Khan ulus), Central Asia (Chagatai ulus), Iran (Ilkhan State) and Russia (Golden Horde). The power of khans of the Golden Horde, founded by Batu Khan, Genghis Khan’s grandson, embraced the territory of a significant part of contemporary Russia (except for Eastern Siberia, Far East and regions of ultima Thule), Northern and Western Kazakhstan, Ukraine, part of Uzbekistan (Khoresm) and Turkmenia.

... more about:
»Genghis »Genghiside »Mongol »Mongolia »Y-chromosome

The geneticists investigated Y-chromosomes of 1,437 men-representatives of 18 ethnic groups in that territory: Altai Kazakhs, Altai-Khizhis, Teleuts, Khakasses, Shor, Tuvinians, Todjins, Tofalars, Soyotes, Buryats, Khamnigans, Evenks, Mongolians, Kalmyks, Tajiks, Kurds, Persians and Russians. The researchers discovered a cluster of male lines possessing a common ancestor, supposedly Genghis Khan, the frequency of the “ancestry” Y-chromosome variant being the highest. The largest share of the Genghisides fell on Mongolia (about 35 percent). In the Russian population, the highest number of the Khan chromosome carriers are among the Altai Kazakhs - 8.3 percent. From 3.4 to 1.7 percent of the Genghisides are also found among the Altai people, Buryats, Tuvinians and Kalmyks.

The researchers point out that despite such detailed investigation of ethnic groups in Southern Siberia, the “Genghiside” cluster was discovered only in the populations boundary to Mongolia, where from the Mongol Empire originated in 1206. Russian principalities were in the Golden Horde allegiance since 1248 through 1480. Nevertheless, men from the Genghis Khan clan left no genetic trace in Russia. The researchers hope that further investigation of the Y-chromosome variability will allow to significantly extend our knowledge about evolution and history of Russian ethnic groups formation and about the origin of individual clans making part of them.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Genghis Genghiside Mongol Mongolia Y-chromosome

More articles from Life Sciences:

nachricht Enzyme with surprising dual function
24.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Flexibility and arrangement - the interaction of ribonucleic acid and water
24.01.2018 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>