Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New channel built

13.03.2002


Hinge benefits: ions pour through this synthetic chloride channel


Chemists copy from cells to make a tunnel for salt

Chemists have finally achieved what every human cell can do. They have designed and built from scratch a gate for electrically charged chlorine atoms to pass through1.

George Gokel and colleagues at Washington University in St Louis, Missouri, based their gate on biological proteins that transport chloride ions from one side of our cell membranes to the other. Like these, the synthetic channel can be opened and closed by applying a voltage. How this happens is not clear, even in natural ion channels.



In nature, voltage regulates ion flow to control how salty cells become. If there are more chloride ions on one side of a membrane than the other, the imbalance of electrical charge sets up a voltage across the membrane that can start or stop ions passing.

Cells use ion channels to produce electrical signals such as nerve impulses and the muscle movements that produce the heart beat. Many channels transport only one kind of ion, sodium, say, or chloride.

Similarly, the artificial channels transport chloride ions much more effectively than other ions, such as potassium or sulphate. Gokel’s group tested them in artificial particles called liposomes, which are hollow shells with walls like real cell membranes.

Several different types of protein-based chloride channel in the human body serve functions ranging from salt uptake to muscle contraction. Genetic mutations that make channels faulty are linked to heritable diseases such as cystic fibrosis and some muscle and kidney complaints.

Artificial chloride channels might one day serve as drugs against such diseases, but that’s a distant goal. At the moment, Gokel and his colleagues are simply trying to build simple molecules that can do the same job as real ion channels. Another motivation is that natural and synthetic ion transporters can act as antibiotics.

Channel tunnel

Cell membranes have an oily inside edge that repels water, so water-soluble substances such as ions need help getting across. Protein ion channels are embedded in a membrane, creating a kind of tunnel that lets ions through.

The new synthetic chloride channel tries to copy this. The molecule has a fatty, oil-soluble tail and a protein-like, ion-transporting head. The fatty tail anchors it in the membrane. The head contains a string of seven amino acids, like those that make up natural chloride channels. In particular, an amino acid known as proline is in the middle of the sequence.

Gokel’s team think that the proline is the hinge-like apex of an arch-shaped structure, and that two prolines stick together in the membrane to form a pore just wide enough for a chloride ion to pass through.

References

  • Schlesinger, P. H. et al. SCMTR: a chloride-selective, membrane-anchored peptide channel that exhibits voltage gating. Journal of the American Chemical Society, 124, 1848 - 1849, (2002).


PHILIP BALL | © Nature News Service

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>