Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-Class Bioimaging Unit Established at Queen’s University

18.05.2007
Queen’s University has established a new £2.2 million Bioimaging Core Technology Unit unique within Ireland and the United Kingdom.

Equipped and resourced to the highest specification, the world-class facility establishes for the first time a Core Technology Unit to support the use and implementation of established and novel bioimaging techniques for the biomedical research community within Queen’s and also for outside organisations.

Funded by an award to Professor Peter Hamilton and Dr Paul Duprex from the Science Research Investment Fund (SRIF2), the aim is to grow the Unit in order to provide extensive imaging facilities for a range of applications. This initiative will significantly enhance the capability and performance of Queen’s research in the biomedical sciences.

Representing a range of specialist microscopy techniques that allows researchers to visualise cells and molecular processes within cells at very high resolution, bioimaging is a vital tool in understanding better how cells function in health and what causes them to malfunction in disease.

... more about:
»Bioimaging »Biomedical »techniques

The equipment contained within the new unit, which is housed within the School of Biomedical Sciences in the University’s Medical Biology Centre, has applications which will benefit a broad spectrum of research areas, including biomedical sciences, the biosciences, pharmaceuticals, drug discovery and applications within the engineering fields.

Speaking about the importance of the new Unit, Peter Hamilton, Director of the Unit said: “We are delighted to have received funding to support this major initiative. Bioimaging techniques are at the core of modern biomedical research and require dedicated facilities and experienced staff. We have one of most well equipped units in Europe and I have no doubt that this will significantly strengthen the research being carried out by the university.”

Commenting on the establishment of the Unit, Professor Bert Rima, Professor of Molecular Biology and Head of the School of Biomedical Sciences at Queen’s added: “Thanks to the dedicated facilities and experienced staff supported by the funding provided for this major initiative from SRIF, Queen’s can now build on its growing reputation for research and leadership in Bioimaging. We look forward to working in partnership with academia and industry in order to provide support in developing some of the most innovative, leading-edge products and technologies.”

The Bioimaging Unit is now open for use by researchers and is currently supporting a wide range of research activities both within the University and with academic and industrial groups outside of Queen’s. The unit also runs courses on a range of bioimaging techniques.

For further information regarding the Bioimaging Unit please contact Unit Manager, Mr. Stewart Church, at 028 90 972274, email s.church@qub.ac.uk or visit www.qub.ac.uk/cm/bmi/Bioimaging/index.htm.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

Further reports about: Bioimaging Biomedical techniques

More articles from Life Sciences:

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>