Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified mechanism for silencing genes points to possible anti-cancer strategies

18.05.2007
Genes provide the instructions used by the individual cells to produce the many different proteins that make up the body. Scientists are only beginning to appreciate, however, the extraordinary degree of control exercised over every step of the production process.

Only about 10 percent of human genes, for example, are actively producing proteins in a given cell at a given time. The remaining 90 percent are silenced by a various mechanisms that act to interfere with gene transcription into messenger RNA or translation of messenger RNA into protein.

In a new study published online May 16 in the journal Nature, a team of scientists at The Wistar Institute, Philadelphia, and the University of California, San Diego, report identification of an important new gene-silencing mechanism, one that blocks the cellular machinery responsible for translating messenger RNA into proteins at specific genes.

The findings suggests that small bits of RNA known as microRNAs, known to help regulate genes but not used for protein production, may be operating in a completely novel way to prevent genes from producing proteins. MicroRNAs have been implicated in a number of cancers, and the newly outlined gene-silencing mechanism offers promising potential targets for anti-cancer interventions.

... more about:
»Foundation »MicroRNAs »RNA »Shiekhattar »ribosome

“Some microRNAs closely match their sequences against particular messenger RNA sequences to target them for destruction,” explains Ramin Shiekhattar, Ph.D., a professor?in the Gene Expression and Regulation Program and the Molecular and Cellular Oncogenesis Program at Wistar and senior author on the new study. Currently, Shiekhattar is also an ICREA professor at the Centre for Genomic Regulation in Barcelona, Spain. “That’s one way we know that microRNAs can silence genes. That mechanism requires extraordinary specificity, however, and we suspected that microRNAs were also acting in some other way to inhibit gene translation into protein. By tracking the associations between molecules involved in generating microRNAs and other molecules in the cell, we uncovered an entirely new pathway, one that led us to a mechanism that blocks the cellular machinery that produces protein from messenger RNA.”

In earlier studies, Shiekhattar identified a three-molecule complex known as RISC and showed that it plays a vital role in generating microRNAs. In the current study, Shiekhattar and his colleagues extended those studies to find that RISC also interacts with another complex that includes molecules required to build functional ribosomes. Ribosomes are cellular organelles responsible for translating messenger RNA into protein. Closer investigation showed that the new complex also included a component called eIF6. This molecule is known to interfere with the proper assembly of ribosomes, which prevents them from doing the work of translating messenger RNA into protein.

“We wondered if certain microRNA-responsive genes might be attracting microRNAs that then recruited eIF6 to that location,” Shiekhattar says. “If so, the eIF6 would prevent the assembly of a competent ribosome, thus blocking messenger RNA translation at that gene. The result would be to silence that specific gene. We tested this idea in human cells and in worms and found it to be the case in both. Interestingly, this not only supported our hypothesis, but to see it in such different organisms also suggested that the mechanism involved has long been conserved in evolution.”

The lead author on the study is Thimmaiah P. Chendrimada at The Wistar Institute. The additional Wistar co-authors are David Baillat (also currently, at the Centre for Genomic Regulation in Barcelona, Spain) and Richard I. Gregory. Co-authors Xinjun Ji and Steve A. Liebhaber, who conducted the experiments involving human cells, are affiliated with the University of Pennsylvania. Kenneth J. Finn is with the University of California, San Diego, as is study collaborator Amy E. Pasquinelli, who performed the investigations involving the C. elegans worm.

The research was supported by the National Institutes of Health, the Searle Foundation, the V Foundation for Cancer Research, the Mathers Foundation, the Cooley’s Anemia Foundation, and the Commonwealth Universal Research Enhancement Program of the Pennsylvania Department of Health.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Foundation MicroRNAs RNA Shiekhattar ribosome

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>