Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrition and heredity are genetically linked

18.05.2007
Disclaimer
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

A challenging goal in biology is to understand how the principal cellular functions are integrated so that cells achieve viability and optimal fitness under a wide range of nutritional conditions. Scientists from the French research centers INRA and CNRS showed by genetic approaches that, in the model bacterium Bacillus subtilis, central carbon metabolism (which generates energy from nutrients) and replication (which synthesizes DNA), two key functions in the fields of nutrition and heredity, are tightly linked. The results appear in the May 16th issue of the online, peer-reviewed, open-access journal PLoS ONE.

The discovered link involves the activity of a small region of the central carbon metabolism (the terminal reactions of a process called glycolysis that burns sugars) and several enzymes of the replication machinery that synthesizes DNA. It is proposed that the link depends on metabolic signals generated as a function of the activity of the terminal reactions of glycolysis which are sensed, directly or indirectly, by replication enzymes. This system would then adjust the speed of DNA synthesis and the stability of the replication machinery to the nutritional richness of the environment, and thus to the cell’s growth rate.

These results, along with those integrating metabolism and, for instance, transcription, apoptosis and nervous flux, suggest that the central carbon metabolism plays a global regulatory function to adjust the activity of principal cellular functions to the richness of the available nutrients. This non metabolic function may explain why several enzymes of the central carbon metabolism are essential and strongly conserved in living organisms.

... more about:
»Central »DNA »PLoS »metabolism »replication

In addition to its fundamental interest, the metabolism/replication link may be of medical importance as early events in carcinogenesis, which generally include an up-regulation of glycolysis (the Warburg effect) and a decrease in DNA stability and replication fidelity, may involve perturbations of the metabolism/replication link.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000447

Further reports about: Central DNA PLoS metabolism replication

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>