Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the cellular origin of Ewing’s sarcoma

16.05.2007
Inserm researchers at the Institut Curie have identified the cells that cause Ewing’s sarcoma. They are cells of the mesenchyme, the connective tissue that supports other tissues. The Institut Curie is the reference center in France for Ewing’s sarcoma, a bone tumor of children, adolescents, and young adults.

The researchers have also succeeded “to make” the tumor cells to become virtually normal mesenchymal cells again. These results, published in Cancer Cell on 7 May 2007, open up new therapeutic possibilities for blocking the development of Ewing’s sarcoma in young patients.

Ewing’s sarcoma (1) is the second most frequent malignant bone tumor in France, with 50 to 100 new cases a year. It occurs in children, teenagers, and young adults (up to 30 years of age), at a frequency that peaks around puberty, between 10 and 20 years of age. This bone tumor essentially grows in the pelvis, ribs, femur, fibula, and tibia. It is highly invasive and metastases are common, especially in the lungs and skeleton.

Treatment of Ewing’s sarcoma, has progressed greatly in the last thirty years. Nowadays, the therapeutic strategy used in most cases combines chemotherapy, radiotherapy and surgery. The Institut Curie is the reference center for Ewing’s sarcoma in France, and is internationally renowned both for clinical management of patients and research into this disease.

... more about:
»Ewing’s »Inserm »mesenchymal »sarcoma »therapeutic

New therapeutic leads

Cancers rarely have a simple molecular signature—a specific mutation that causes tumor growth. In the case of Ewing’s sarcoma, a molecular signature was identified and characterized in 1992 by Olivier Delattre’s Inserm team at the Institut Curie. It is an accidental change of genetic material between two chromosomes, which results in the formation of a mutant gene, which codes for an abnormal protein called EWS/FLI-1. This discovery led on to the development of a diagnostic test for Ewing’s sarcoma in 1994. Yet until now, the nature of the cell in which this mutation occurs was unknown.

The group of Olivier Delattre, the Director of Inserm Unit 830 “Genetics and Biology of Cancer” at the Institut Curie, and the team of Pierre Charbord, the Director of Inserm Laboratory ERI5 “Microenvironment of Hematopoiesis and Stem Cells” in Tours, have now discovered that Ewing’s sarcoma are caused by cells of the mesenchyme, a connective tissue that supports other tissues. They have shown that the profile of the transcriptome (2) of Ewing’s sarcoma ressemble that of mesenchymal cells, particularly mesenchymal stem cells, when EWS/FLI-1 is inhibited.

By inhibiting the abnormal protein EWS/FLI-1 that causes Ewing’s sarcoma, the researchers also “forced” the tumor cells to return to their original status of mesenchymal stem cells, which can then differentiate normally into bone or fat cells. This approach opens up new therapeutic prospects, since by forcing the cells to resume their original function it may be possible in the future to make them less aggressive and prevent their proliferation. As long as the tumor cells are still able to fulfill their function, they generally proliferate slowly, and the prognosis is good; once they lose this capacity, however, the tumor cells become highly aggressive.

This discovery could allow Delattre, Charbord and colleagues to produce an animal model of Ewing’s sarcoma, an essential stage in the development of new treatments.

These results, published in the May 7 issue of Cancer Cell, show once more that the close collaboration at the Institut Curie between physicians and researchers is vital to advances in treatments of Ewing’s sarcoma.

Catherine Goupillon | alfa
Further information:
http://www.curie.fr
http://www.cancercell.org/

Further reports about: Ewing’s Inserm mesenchymal sarcoma therapeutic

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>