Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the cellular origin of Ewing’s sarcoma

16.05.2007
Inserm researchers at the Institut Curie have identified the cells that cause Ewing’s sarcoma. They are cells of the mesenchyme, the connective tissue that supports other tissues. The Institut Curie is the reference center in France for Ewing’s sarcoma, a bone tumor of children, adolescents, and young adults.

The researchers have also succeeded “to make” the tumor cells to become virtually normal mesenchymal cells again. These results, published in Cancer Cell on 7 May 2007, open up new therapeutic possibilities for blocking the development of Ewing’s sarcoma in young patients.

Ewing’s sarcoma (1) is the second most frequent malignant bone tumor in France, with 50 to 100 new cases a year. It occurs in children, teenagers, and young adults (up to 30 years of age), at a frequency that peaks around puberty, between 10 and 20 years of age. This bone tumor essentially grows in the pelvis, ribs, femur, fibula, and tibia. It is highly invasive and metastases are common, especially in the lungs and skeleton.

Treatment of Ewing’s sarcoma, has progressed greatly in the last thirty years. Nowadays, the therapeutic strategy used in most cases combines chemotherapy, radiotherapy and surgery. The Institut Curie is the reference center for Ewing’s sarcoma in France, and is internationally renowned both for clinical management of patients and research into this disease.

... more about:
»Ewing’s »Inserm »mesenchymal »sarcoma »therapeutic

New therapeutic leads

Cancers rarely have a simple molecular signature—a specific mutation that causes tumor growth. In the case of Ewing’s sarcoma, a molecular signature was identified and characterized in 1992 by Olivier Delattre’s Inserm team at the Institut Curie. It is an accidental change of genetic material between two chromosomes, which results in the formation of a mutant gene, which codes for an abnormal protein called EWS/FLI-1. This discovery led on to the development of a diagnostic test for Ewing’s sarcoma in 1994. Yet until now, the nature of the cell in which this mutation occurs was unknown.

The group of Olivier Delattre, the Director of Inserm Unit 830 “Genetics and Biology of Cancer” at the Institut Curie, and the team of Pierre Charbord, the Director of Inserm Laboratory ERI5 “Microenvironment of Hematopoiesis and Stem Cells” in Tours, have now discovered that Ewing’s sarcoma are caused by cells of the mesenchyme, a connective tissue that supports other tissues. They have shown that the profile of the transcriptome (2) of Ewing’s sarcoma ressemble that of mesenchymal cells, particularly mesenchymal stem cells, when EWS/FLI-1 is inhibited.

By inhibiting the abnormal protein EWS/FLI-1 that causes Ewing’s sarcoma, the researchers also “forced” the tumor cells to return to their original status of mesenchymal stem cells, which can then differentiate normally into bone or fat cells. This approach opens up new therapeutic prospects, since by forcing the cells to resume their original function it may be possible in the future to make them less aggressive and prevent their proliferation. As long as the tumor cells are still able to fulfill their function, they generally proliferate slowly, and the prognosis is good; once they lose this capacity, however, the tumor cells become highly aggressive.

This discovery could allow Delattre, Charbord and colleagues to produce an animal model of Ewing’s sarcoma, an essential stage in the development of new treatments.

These results, published in the May 7 issue of Cancer Cell, show once more that the close collaboration at the Institut Curie between physicians and researchers is vital to advances in treatments of Ewing’s sarcoma.

Catherine Goupillon | alfa
Further information:
http://www.curie.fr
http://www.cancercell.org/

Further reports about: Ewing’s Inserm mesenchymal sarcoma therapeutic

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>