Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the cellular origin of Ewing’s sarcoma

16.05.2007
Inserm researchers at the Institut Curie have identified the cells that cause Ewing’s sarcoma. They are cells of the mesenchyme, the connective tissue that supports other tissues. The Institut Curie is the reference center in France for Ewing’s sarcoma, a bone tumor of children, adolescents, and young adults.

The researchers have also succeeded “to make” the tumor cells to become virtually normal mesenchymal cells again. These results, published in Cancer Cell on 7 May 2007, open up new therapeutic possibilities for blocking the development of Ewing’s sarcoma in young patients.

Ewing’s sarcoma (1) is the second most frequent malignant bone tumor in France, with 50 to 100 new cases a year. It occurs in children, teenagers, and young adults (up to 30 years of age), at a frequency that peaks around puberty, between 10 and 20 years of age. This bone tumor essentially grows in the pelvis, ribs, femur, fibula, and tibia. It is highly invasive and metastases are common, especially in the lungs and skeleton.

Treatment of Ewing’s sarcoma, has progressed greatly in the last thirty years. Nowadays, the therapeutic strategy used in most cases combines chemotherapy, radiotherapy and surgery. The Institut Curie is the reference center for Ewing’s sarcoma in France, and is internationally renowned both for clinical management of patients and research into this disease.

... more about:
»Ewing’s »Inserm »mesenchymal »sarcoma »therapeutic

New therapeutic leads

Cancers rarely have a simple molecular signature—a specific mutation that causes tumor growth. In the case of Ewing’s sarcoma, a molecular signature was identified and characterized in 1992 by Olivier Delattre’s Inserm team at the Institut Curie. It is an accidental change of genetic material between two chromosomes, which results in the formation of a mutant gene, which codes for an abnormal protein called EWS/FLI-1. This discovery led on to the development of a diagnostic test for Ewing’s sarcoma in 1994. Yet until now, the nature of the cell in which this mutation occurs was unknown.

The group of Olivier Delattre, the Director of Inserm Unit 830 “Genetics and Biology of Cancer” at the Institut Curie, and the team of Pierre Charbord, the Director of Inserm Laboratory ERI5 “Microenvironment of Hematopoiesis and Stem Cells” in Tours, have now discovered that Ewing’s sarcoma are caused by cells of the mesenchyme, a connective tissue that supports other tissues. They have shown that the profile of the transcriptome (2) of Ewing’s sarcoma ressemble that of mesenchymal cells, particularly mesenchymal stem cells, when EWS/FLI-1 is inhibited.

By inhibiting the abnormal protein EWS/FLI-1 that causes Ewing’s sarcoma, the researchers also “forced” the tumor cells to return to their original status of mesenchymal stem cells, which can then differentiate normally into bone or fat cells. This approach opens up new therapeutic prospects, since by forcing the cells to resume their original function it may be possible in the future to make them less aggressive and prevent their proliferation. As long as the tumor cells are still able to fulfill their function, they generally proliferate slowly, and the prognosis is good; once they lose this capacity, however, the tumor cells become highly aggressive.

This discovery could allow Delattre, Charbord and colleagues to produce an animal model of Ewing’s sarcoma, an essential stage in the development of new treatments.

These results, published in the May 7 issue of Cancer Cell, show once more that the close collaboration at the Institut Curie between physicians and researchers is vital to advances in treatments of Ewing’s sarcoma.

Catherine Goupillon | alfa
Further information:
http://www.curie.fr
http://www.cancercell.org/

Further reports about: Ewing’s Inserm mesenchymal sarcoma therapeutic

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>