Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene Thought to Assist Chemo May Help Cancer Thrive

A gene thought to be essential in helping chemotherapy kill cancer cells, may actually help them thrive. Scientists at the Georgia Institute of Technology and the Ovarian Cancer Institute conducted a study and found that 70 percent of subjects whose tumors had mutations in the gene known as p53 and had undergone chemotherapy were still alive after five years.

Those patients whose tumors had normal p53 displayed only a 30 percent survival rate. The findings raise the possibility of a new strategy for fighting cancer - namely, developing drugs to disable the functioning of this gene in the tumors of patients undergoing chemotherapy. The results appear in the May 16 edition of the online, peer-reviewed, open-access journal PLoS ONE.

"P53 has long been recognized as a key player in directing chemotherapy-damaged cancer cells to self annihilate, but less attention has been paid to p53's role in repairing damaged cells," said John McDonald, chair of Georgia Tech's School of Biology and chief research scientist at the Ovarian Cancer Institute.

When a cell is malfunctioning or injured, the gene p53 is called into action and tries to repair the cell. If the cell can't be repaired,p53 starts a process known as apoptosis that kills the cell. It's p53's role as one of the genes involved in initiating cell death that has led cancer researchers to long believe that the gene is essential to successful chemotherapy. The idea is that p53 assists in killing the cancerous cells that the chemo treatment injures.

... more about:
»Chemo »chemotherapy »ovarian »p53 »repair »treated

But in this latest trial, Georgia Tech researchers found that p53 may be a "double-edged sword." Chemotherapy patients whose tumors had a mutated p53 gene that didn't work had a much better survival rate than those who had normal p53.

In the study, researchers took malignant and benign ovarian tumors straight from the operating room and compared their gene expression profiles. Some of the cancer patients had been treated with chemotherapy prior to surgery, and some had not. At this point researchers didn't consider whether the patients actually had malignant tumors or had been treated with chemotherapy. However, they found that the gene expression profiles of the tumors clustered the chemotherapy-treated patients into two groups: those whose profiles were similar to cancer patients who had not been treated with chemo and those whose profiles were similar to patients with benign tumors.

As they continued their analysis, they found that the main difference between the groups' genetic profiles was the gene p53. While both groups had roughly the same amount of the protein encoded by p53, the cancer group had mutations in their p53 that caused the gene's corresponding protein not to function. The benign group's p53 was normal.

Five years later, only 30 percent of the chemotherapy cancer patients clustering in the benign group were alive, while 70 percent of those clustering in the cancer group were still alive. The stage of cancer at the time of surgery had no correlation to who survived and who didn't. What did seem to have an effect was whether p53 was working or not in the chemotherapy-treated tumors.

A standard belief in cancer research is that a working p53 is essential in helping chemo patients because it turns on the killing mechanism for the cells that were damaged by chemo. But McDonald points out that p53 can also help repair damaged cells. If p53 is repairing cancer cells, that may lead to cancer recurrence.

"We think p53 may actually help some cancer cells make a comeback,"
he said. "Based on our results, we propose that p53 may help repair some of the cancer cells damaged by chemotherapy leading to tumor recurrence and explaining the higher mortality rate of patients whose tumors had a functioning p53. If we are correct, inhibiting p53 in tumors being treated with chemotherapy may substantially improve patients' long-term survival."

McDonald and colleagues are continuing to test their theory by conducting studies in cell cultures and mice. If it bears out, then disabling the gene in tumors, through medications or new genetic techniques during chemotherapy may help patients survive.

In addition to McDonald, the research team consisted of: Benedict Benigno, gynecologic oncologist and founder of the Ovarian Cancer Institute; Lilya Matyunina, Erin B. Dickerson, Nina Schubert, and Nathan J. Bowen from Georgia Tech and the Ovarian Cancer Institute; Sanjay Logani from Emory University; and Carlos Moreno from Emory's Winship Cancer Institute.

The research was supported by the Georgia Cancer Coalition, the Georgia Tech Research Foundation, the Robinson Family Foundation and the Larry and Beth Lawrence Foundation.

Andrew Hyde | alfa
Further information:

Further reports about: Chemo chemotherapy ovarian p53 repair treated

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>