Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do Fruit Flies Have Free Will?

16.05.2007
Scientists Measure Spontaneity in Drosophila.

Free will and true spontaneity exist … in fruit flies. This is what scientists report in a groundbreaking study in the May 16, 2007 issue of the open-access journal PLoS ONE.

“Animals and especially insects are usually seen as complex robots which only respond to external stimuli,” says senior author Björn Brembs from the Free University Berlin. They are assumed to be input-output devices. “When scientists observe animals responding differently even to the same external stimuli, they attribute this variability to random errors in a complex brain.” Using a combination of automated behavior recording and sophisticated mathematical analyses, the international team of researchers showed for the first time that such variability cannot be due to simple random events but is generated spontaneously and non-randomly by the brain. These results caught computer scientist and lead author Alexander Maye from the University of Hamburg by surprise: “I would have never guessed that simple flies who otherwise keep bouncing off the same window have the capacity for nonrandom spontaneity if given the chance.”

The researchers tethered fruit flies (Drosophila melanogaster) in completely uniform white surroundings and recorded their turning behavior. In this setup, the flies do not receive any visual cues from the environment and since they are fixed in space, their turning attempts have no effect. Thus lacking any input, their behavior should resemble random noise, similar to a radio tuned between stations. However, the analysis showed that the temporal structure of fly behavior is very different from random noise. The researchers then tested a plethora of increasingly complex random computer models, all of which failed to adequately model fly behavior.

... more about:
»Random »spontaneous

Only after the team analyzed the fly behavior with methods developed by co-authors George Sugihara and Chih-hao Hsieh from the Scripps Institution of Oceanography at UC San Diego did they realize the origin of the fly’s peculiar spontaneity. “We found that there must be an evolved function in the fly brain which leads to spontaneous variations in fly behavior” Sugihara said. “The results of our analysis indicate a mechanism which might be common to many other animals and could form the biological foundation for what we experience as free will”.

Our subjective notion of “Free Will” is an oxymoron: the term ‘will’ would not apply if our actions were completely random and it would not be ‘free’ if they were entirely determined. So if there is free will, it must be somewhere between chance and necessity - which is exactly where fly behavior comes to lie. “The question of whether or not we have free will appears to be posed the wrong way,” says Brembs. “Instead, if we ask ‘how close to free will are we?’ one finds that this is precisely where humans and animals differ”.

The next step will be to use genetics to localize and understand the brain circuits responsible for the spontaneous behavior. This step could lead directly to the development of robots with the capacity for spontaneous nonrandom behavior and may help combating disorders leading to compromised spontaneous behavioral variability in humans such as depression, schizophrenia or obsessive compulsive disorder.

The research will appear in the May 16, 2007 issue of the open-access journal PLoS ONE.

[A multimedia version of this story, with video and illustrations, is available on Björn Brembs’ website, at http://brembs.net/spontaneous]

Andrew Hyde | alfa
Further information:
http://brembs.net/spontaneous
http://www.plosone.org/doi/pone.0000443
http://www.plosone.org

Further reports about: Random spontaneous

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>