Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primary tumors can chose among (at least) three different strategies to spread and form metastases

15.05.2007
Primary tumors can spread towards distant organs as single cells, when they lose a protein called E-cadherin. But they can also move as a cell cluster, if they sense the activity of a protein called podoplanin.

Or, in a third scenario, they can sprout lymphatic vessels that facilitate their dissemination when they perceive the presence of two molecules called VEGF-C and VEGF-D.

The existence of several different kinds of metastatic mechanisms was advanced today by Gerhard Christofori, head of the Tumor Biology group at the Center of Biomedicine of the University of Basel, during the closing keynote of the Workshop on Cell Migration: From Molecules to Organisms and Diseases promoted by the European School of Molecular Medicine (SEMM) and the University of Milan, in collaboration with IFOM – The FIRC Institute for Molecular Oncology of the Italian Foundation for Cancer Research, and IEO – European Institute of Oncology. The Workshop was held at the IFOM-IEO Campus (via Adamello, 16, Milan) that was recently opened and represents the biggest area dedicated to the oncological research in Europe.

Until recently, cancer scientists thought that tumors followed a unique pattern of dissemination within the body, being the first step triggered by the detachment of single “riot” cells that were freed from the original tissue and became insensitive towards the surroundings. Now, this scenario has completely changed, as deeper investigations have revealed the existence of at least three distinct mechanisms of spreading, each of them relying on diverse signaling molecules. “When single cells detach from the “mother tissue” – explains Christofori – we can observe the inhibition of a protein called E-cadherin. Its absence represents a molecular switch able to trigger a cascade of events leading to single cell migration”.

This mechanism, however, is not the only one. As Christofori proved, the invasion of surrounding tissues by clusters of malignant cells is promoted by a protein called podoplanin. “We were able to show that podoplanin induces the formation of so-called filopoda, long protrusions stemming from the front line of the tumor that sense the environment and help the cells to make decisions as where to go.”

The third process identified by Christofori and colleagues involves the two lymphoangiogenic (i.e. involved in the development of novel lymphatic vessels) growth factors VEGF-C and VEGF-D. Due to upregulated expression of these two molecules, the tumor induces an increase of lymphatic vessel density in its surroundings, which in turns facilitates the dissemination of tumor cells (through the lymphatic system) and the formation of lymph node metastases.

“These results altogether – comments Ugo Cavallaro, IFOM scientist and member of the Workshop Scientific Committee – could change the way scientists have so far thought about metastases formation, since the three processes do not exclude one another in an individual patient.” These findings open then new possibilities for clinical approach, which should be diversified depending on what mechanism(s) is observed in each patient.

Francesca Noceti | alfa
Further information:
http://www.semm.it/workshop/cellmig07/

Further reports about: Christofori lymphatic mechanism metastases surrounding

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>