Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primary tumors can chose among (at least) three different strategies to spread and form metastases

15.05.2007
Primary tumors can spread towards distant organs as single cells, when they lose a protein called E-cadherin. But they can also move as a cell cluster, if they sense the activity of a protein called podoplanin.

Or, in a third scenario, they can sprout lymphatic vessels that facilitate their dissemination when they perceive the presence of two molecules called VEGF-C and VEGF-D.

The existence of several different kinds of metastatic mechanisms was advanced today by Gerhard Christofori, head of the Tumor Biology group at the Center of Biomedicine of the University of Basel, during the closing keynote of the Workshop on Cell Migration: From Molecules to Organisms and Diseases promoted by the European School of Molecular Medicine (SEMM) and the University of Milan, in collaboration with IFOM – The FIRC Institute for Molecular Oncology of the Italian Foundation for Cancer Research, and IEO – European Institute of Oncology. The Workshop was held at the IFOM-IEO Campus (via Adamello, 16, Milan) that was recently opened and represents the biggest area dedicated to the oncological research in Europe.

Until recently, cancer scientists thought that tumors followed a unique pattern of dissemination within the body, being the first step triggered by the detachment of single “riot” cells that were freed from the original tissue and became insensitive towards the surroundings. Now, this scenario has completely changed, as deeper investigations have revealed the existence of at least three distinct mechanisms of spreading, each of them relying on diverse signaling molecules. “When single cells detach from the “mother tissue” – explains Christofori – we can observe the inhibition of a protein called E-cadherin. Its absence represents a molecular switch able to trigger a cascade of events leading to single cell migration”.

This mechanism, however, is not the only one. As Christofori proved, the invasion of surrounding tissues by clusters of malignant cells is promoted by a protein called podoplanin. “We were able to show that podoplanin induces the formation of so-called filopoda, long protrusions stemming from the front line of the tumor that sense the environment and help the cells to make decisions as where to go.”

The third process identified by Christofori and colleagues involves the two lymphoangiogenic (i.e. involved in the development of novel lymphatic vessels) growth factors VEGF-C and VEGF-D. Due to upregulated expression of these two molecules, the tumor induces an increase of lymphatic vessel density in its surroundings, which in turns facilitates the dissemination of tumor cells (through the lymphatic system) and the formation of lymph node metastases.

“These results altogether – comments Ugo Cavallaro, IFOM scientist and member of the Workshop Scientific Committee – could change the way scientists have so far thought about metastases formation, since the three processes do not exclude one another in an individual patient.” These findings open then new possibilities for clinical approach, which should be diversified depending on what mechanism(s) is observed in each patient.

Francesca Noceti | alfa
Further information:
http://www.semm.it/workshop/cellmig07/

Further reports about: Christofori lymphatic mechanism metastases surrounding

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>