Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how antibiotic inhibits bacterial growth

14.05.2007
Researchers at the University of Illinois at Chicago, in collaboration with research teams from Pharmacia & Upjohn and Pfizer, have discovered precisely how the antibiotic linezolid inhibits bacterial growth.

Scientists have known that the drug linezolid -- the first new antibiotic to enter the marketplace in 30 years -- works by binding to ribosomes, the protein production factory of the cell. But exactly where the binding occurred and how the drug worked was not known. Until now.

"Linezolid targets ribosomes, inhibits protein synthesis, and kills bacteria," said Alexander Mankin, professor and associate director of UIC's Center for Pharmaceutical Biotechnology and lead investigator of the study. "If we know exactly where the drug binds, we can make it better and learn how to use it more effectively."

Linezolid is a synthetic antibiotic used for the treatment of infections caused by pathogens such as staph and strep, including multi-drug-resistant bacteria. Skin infections, pneumonia, and other diseases can be treated with linezolid. It is marketed in the United States as Zyvox.

... more about:
»Linezolid »antibiotic »inhibits »ribosome

Mankin and his colleagues managed not only to crosslink the drug to its target in the living cell, but to precisely characterize the mode of binding of the drug to the ribosome.

"It was a combined effort of excellent chemists, structural biologists and biochemists," Mankin said.

"We now understand much better how the drug works, how it can be improved, and how bacteria can become resistant to linezolid."

A second part of the study involved learning why, in rare cases, the drug can have side effects causing a decrease in the production of blood cells. By crosslinking linezolid to its target in human cells, the researchers showed that the drug may be toxic to mitochondria -- the power generators of the cell -- which contain ribosomes that resemble the ribosomes of bacteria.

"This is the first time such detailed information about the linezolid target in the living cell has been obtained," Mankin said.

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Linezolid antibiotic inhibits ribosome

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>