Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how antibiotic inhibits bacterial growth

14.05.2007
Researchers at the University of Illinois at Chicago, in collaboration with research teams from Pharmacia & Upjohn and Pfizer, have discovered precisely how the antibiotic linezolid inhibits bacterial growth.

Scientists have known that the drug linezolid -- the first new antibiotic to enter the marketplace in 30 years -- works by binding to ribosomes, the protein production factory of the cell. But exactly where the binding occurred and how the drug worked was not known. Until now.

"Linezolid targets ribosomes, inhibits protein synthesis, and kills bacteria," said Alexander Mankin, professor and associate director of UIC's Center for Pharmaceutical Biotechnology and lead investigator of the study. "If we know exactly where the drug binds, we can make it better and learn how to use it more effectively."

Linezolid is a synthetic antibiotic used for the treatment of infections caused by pathogens such as staph and strep, including multi-drug-resistant bacteria. Skin infections, pneumonia, and other diseases can be treated with linezolid. It is marketed in the United States as Zyvox.

... more about:
»Linezolid »antibiotic »inhibits »ribosome

Mankin and his colleagues managed not only to crosslink the drug to its target in the living cell, but to precisely characterize the mode of binding of the drug to the ribosome.

"It was a combined effort of excellent chemists, structural biologists and biochemists," Mankin said.

"We now understand much better how the drug works, how it can be improved, and how bacteria can become resistant to linezolid."

A second part of the study involved learning why, in rare cases, the drug can have side effects causing a decrease in the production of blood cells. By crosslinking linezolid to its target in human cells, the researchers showed that the drug may be toxic to mitochondria -- the power generators of the cell -- which contain ribosomes that resemble the ribosomes of bacteria.

"This is the first time such detailed information about the linezolid target in the living cell has been obtained," Mankin said.

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Linezolid antibiotic inhibits ribosome

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>