Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LIAI scientists make important finding on cytomegalovirus transmission

Finding may have implications for AIDS and other chronic virus infections

Researchers at the La Jolla Institute for Allergy & Immunology have shown that cytomegalovirus (CMV) in the salivary glands can be reduced – and in some cases eliminated – through the use of antibodies to enhance the disease-fighting power of the immune system. The research team’s findings, based on controlled laboratory studies of mice, may also have implications for other chronic virus infections, such as hepatitis and HIV, the virus that causes AIDS.

The team’s findings were published online this week in the Journal of Experimental Medicine in a paper entitled, "Cytomegalovirus exploits IL-10-mediated immune regulation in the salivary glands." LIAI scientists Ian Humphreys, Ph.D., Carl Ware, Ph.D., and Michael Croft, Ph.D. led the study. CMV is a virus that affects the majority of the world’s population, but produces little or no symptoms in healthy individuals. However, it can cause multi-organ disease in newborns or persons who are immuno-compromised such as organ transplant recipients or AIDS patients.

Ware said, "The main importance of these experiments is identifying the critical molecular targets controlling virus persistence, and two ways in which we can modulate immunity in vivo with the desired result of blocking virus spread to uninfected individuals.

"The potential excitement in the findings is that we may be able to one day use this kind of treatment in humans to block or significantly reduce the spread of cytomegalovirus and other chronic virus infections." Ware noted that the salivary glands are a primary source of transmission for many viruses due to sneezing, coughing and kissing. Eliminating the virus at this critical juncture may significantly reduce CMV’s spread, he said.

In the study, Croft said the research team used an antibody to block the action of the IL-10 protein in the salivary glands of mice by inhibiting binding of IL-10 to its receptor. "IL-10 is a messenger molecule which suppresses the protective T cell response that would normally attack the cytomegalovirus," he said. "By blocking the ability of the IL-10 molecule to bind to its receptor, then you allow these T cells to do their job and reduce or eliminate this virus."

Croft said the scientists also tested a second approach, which used a stimulator antibody in mice to boost the action of the OX40 protein. OX40 helps T cells replicate more quickly, thus building the body’s ability to more effectively battle the virus. "We used this approach to tip the balance in favor of the T cells that would reduce the virus," he said.

The scientists got a stronger result by blocking the IL-10 receptor. "It significantly reduced the virus load in all the animals and in 50 percent of them it completely eliminated it," Croft said. The OX40 treatment also greatly reduced the virus load, but did not eliminate it in any of the animals.

The findings of the Ware and Croft team parallel those of LIAI researcher Matthias von Herrath, M.D., who last year announced that he had successfully eliminated a chronic virus infection in mice by blocking the IL-10 receptor. "Dr. von Herrath’s findings suggested that the IL-10 molecule plays a pretty important role in small RNA viruses, while our study looked at its impact in large DNA viruses," Ware said. "I think both of these studies lend credibility to the idea that the medical community should be looking at IL-10 as a molecular candidate that might be used to control persistent viral infections."

Ware and Croft’s next step will be conducting animal studies with the IL-10 suppression and the OX40 enhancement combined into one treatment. "We tested them separately, but they may well be even more effective when combined," Croft said.

Bonnie Ward | EurekAlert!
Further information:

Further reports about: Chronic Croft Cytomegalovirus IL-10 LIAI OX40 blocking finding glands scientists

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>