Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers publish first marsupial genome sequence

14.05.2007
An international team, led by researchers at the Broad Institute of MIT and Harvard, and supported by the National Institutes of Health (NIH), today announced the publication of the first genome of a marsupial, belonging to a South American species of opossum.

In a comparison of the marsupial genome to genomes of non-marsupials, including human, published in the May 10 issue of the journal Nature, the team found that most innovations leading to the human genome sequence lie not in protein-coding genes, but in areas that until recently were referred to as "junk" DNA.

The effort to generate the high-quality genome sequence of the gray short-tailed, South American opossum, Monodelphis domestica, began in 2003 and cost approximately $25 million. The sequencing work was funded by the National Human Genome Research Institute (NHGRI), part of the NIH, and carried out at the Broad Institute Sequencing Platform, which is a member of NHGRI's Large-Scale Sequencing Research Network.

"The opossum genome occupies a unique position on the tree of life. This analysis fills a crucial gap in our understanding of how mammalian genomes, including our own, have evolved over millions of years," said NHGRI Director Francis S. Collins, M.D., Ph.D. "These new findings illustrate how important it is to understand all of the human genome, not just the fraction that contains genes that code for proteins. We must identify all functional elements in the genome if we are to have the most complete toolbox possible to explore human biology and improve human health."

... more about:
»Broad Institute »DNA »Genetic »Genome »marsupial »sequence

Marsupials are unique among mammals because their young are born at an extremely early stage of development, attach to their mother's teats and complete their subsequent development while in a protective pouch. This makes the young readily available for early developmental research.

There are many other areas of biomedical research for which Monodelphis serves as a model. For example, it is the only laboratory animal known in which ultraviolet radiation alone can cause melanoma, a type of skin cancer that also strikes humans exposed to too much of the sun's ultraviolet rays. Having the sequence of the opossum genome will give researchers the ability to learn more about the molecular basis of melanoma and its progression, as well as explore development of new therapies and preventive treatments.

The opossum genome sequence also provides researchers with a fresh perspective on the evolutionary origins of the human genome. It sheds light on the genetic differences between placental mammals, such as humans, mice and dogs, and marsupial mammals, such as opossums and kangaroos.

"Marsupials are the closest living relatives of placental mammals. Because of this relationship, the opossum genome offers a unique lens though which to view the evolution of our own genome," said Kirstin Lindblad-Toh, Ph.D., co-director of the Broad Institute's genome sequencing and analysis program and the study's senior author.

Marsupials and the ancestors of placental mammals diverged 180 million years ago. By comparing the opossum and human genomes, researchers were able to pinpoint genetic elements that are present in placental mammals, but missing from marsupials —that is, the genetic factors that may underlie many of the differences between the two types of mammals.

Interestingly, about one-fifth of the key functional elements in the human genome arose during this relatively recent evolutionary period. By focusing on the recent genetic innovations, the scientists made two major findings:

- First, the vast majority (about 95 percent) of recent genetic innovation lies not in protein-coding genes, but in regions of the genome that do not contain genes and that many had referred to as junk DNA until recently. Researchers now know that junk DNA may contain regulatory elements that influence the activity of nearby genes, but the full extent of the importance of these non-gene regions is still being revealed. The new results suggest that mammals evolved not so much by inventing new kinds of proteins, as by tweaking the molecular controls that dictate when and where proteins are made.

- Second, many of the new DNA instructions appear to be derived from transposons, or "jumping genes," which are also located in areas once thought to be junk DNA.

"Transposons have a restless lifestyle, often shuttling themselves from one chromosome to another," said the study's first author Tarjei Mikkelsen, a Broad Institute researcher. "It is now clear that in their travels, they are disseminating crucial genetic innovations around the genome."

Other important findings to emerge from the analysis of the opossum genome include:

- The opossum has many genes involved in immunity, challenging the notion that marsupials possess only primitive immune systems.

- The opossum genome has an unusual structure with fewer chromosomes than the human genome (9 pairs versus 23 pairs, respectively) but a longer total length (3.4 billion versus 3 billion bases, respectively).

Geoff Spencer | EurekAlert!
Further information:
http://www.genome.gov
http://www.nih.gov

Further reports about: Broad Institute DNA Genetic Genome marsupial sequence

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>