Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lessons from ovarian cells migration: The three “Ws” of ovarian cancer spreading

14.05.2007
Who must go? When to go? Where to go? During development ovarian cells migrate in a spacial-temporal coordinated way, responding to specific signals that determine which cells have to move, when they have to move, and where they have to go.

The same types of signals stimulate migration of ovarian cancer cells, which follow specific signals to move from the female genital tract towards the peritoneum and stroma, where they form metastases. These findings were presented today (May 13th) by Denise Montell, Professor of Biological Chemistry at the Johns Hopkins University School of Medicine in Baltimore (Maryland), at the Workshop on Cell Migration: From Molecules to Organisms and Diseases promoted by the European School of Molecular Medicine (SEMM) and the University of Milan, in collaboration with IFOM – The FIRC Institute for Molecular Oncology of the Italian Foundation for Cancer Research, and IEO – European Institute of Oncology. Venue of the Workshop is the IFOM-IEO Campus (via Adamello, 16, Milan) that was recently opened and represents the biggest area dedicated to the oncological research in Europe.

Epithelial ovarian cancer (EOC) develops in the ovary, especially in the cells that cover the outer surface of this organ. As it scores 190,000 new cases each year worldwide (61,000 in Europe), it has fuelled intensive investigations all over the world. Denise Montell and her group have been studying cell migration for years, in the attempt to elucidate the key elements that govern their movement. To this purpose the scientists have set up a system called “border cells model”, employing fruit fly (Drosophila melanogaster) cells, which has led to the identification of specific regulatory signals that cells respond to. “Epithelial cells migrate in a way that is reminiscent of the migratory behavior of cancer cells - explains the scientists – and this moving is highly coordinated as it responds to extracellular signals present in the surrounding microenvironment. Using our experimental model we were able to identify three kinds of signals.”

They are:

... more about:
»Migration »Montell »ovarian »signals
- When: steroid hormones dictate the time when cells must start moving;
- Where: Growth Factors show them the right direction;
- Who: compounds called cytokines determine which cells will acquire mobility.

“Each of these signals – continues Montell – must work together in order for the cells to proceed to their correct destination. But they are not the only ones”. Further investigations into the signaling pathway of ovarian cells, in fact, led Montell to identify Par-1 as a key gene that controls cells migration. “We found – says Montell – that Par-1 regulates the detachment of cells from the epithelium and a critical step in releasing the cells from the original tissue”. Along these lines, future goal of the scientists will be to determine whether Par-1 contributes to ovarian cancer metastasis, or that of other carcinomas.

“Basic science results such as Montell’s have great value – points out Marina Mione, head of the IFOM program Genetic control of cell migration in zebrafish, and member of the Workshop’s Scientific Committee – as they pave the way for future clinical application. Devising new therapeutic approaches implies previous acquisition of solid scientific baseline information. Moving from observations acquired in physiological conditions Montell opens a number of new avenues that will promote our understanding of pathological conditions”.

Francesca Noceti | alfa
Further information:
http://www.semm.it/workshop/cellmig07/

Further reports about: Migration Montell ovarian signals

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>