Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lessons from ovarian cells migration: The three “Ws” of ovarian cancer spreading

14.05.2007
Who must go? When to go? Where to go? During development ovarian cells migrate in a spacial-temporal coordinated way, responding to specific signals that determine which cells have to move, when they have to move, and where they have to go.

The same types of signals stimulate migration of ovarian cancer cells, which follow specific signals to move from the female genital tract towards the peritoneum and stroma, where they form metastases. These findings were presented today (May 13th) by Denise Montell, Professor of Biological Chemistry at the Johns Hopkins University School of Medicine in Baltimore (Maryland), at the Workshop on Cell Migration: From Molecules to Organisms and Diseases promoted by the European School of Molecular Medicine (SEMM) and the University of Milan, in collaboration with IFOM – The FIRC Institute for Molecular Oncology of the Italian Foundation for Cancer Research, and IEO – European Institute of Oncology. Venue of the Workshop is the IFOM-IEO Campus (via Adamello, 16, Milan) that was recently opened and represents the biggest area dedicated to the oncological research in Europe.

Epithelial ovarian cancer (EOC) develops in the ovary, especially in the cells that cover the outer surface of this organ. As it scores 190,000 new cases each year worldwide (61,000 in Europe), it has fuelled intensive investigations all over the world. Denise Montell and her group have been studying cell migration for years, in the attempt to elucidate the key elements that govern their movement. To this purpose the scientists have set up a system called “border cells model”, employing fruit fly (Drosophila melanogaster) cells, which has led to the identification of specific regulatory signals that cells respond to. “Epithelial cells migrate in a way that is reminiscent of the migratory behavior of cancer cells - explains the scientists – and this moving is highly coordinated as it responds to extracellular signals present in the surrounding microenvironment. Using our experimental model we were able to identify three kinds of signals.”

They are:

... more about:
»Migration »Montell »ovarian »signals
- When: steroid hormones dictate the time when cells must start moving;
- Where: Growth Factors show them the right direction;
- Who: compounds called cytokines determine which cells will acquire mobility.

“Each of these signals – continues Montell – must work together in order for the cells to proceed to their correct destination. But they are not the only ones”. Further investigations into the signaling pathway of ovarian cells, in fact, led Montell to identify Par-1 as a key gene that controls cells migration. “We found – says Montell – that Par-1 regulates the detachment of cells from the epithelium and a critical step in releasing the cells from the original tissue”. Along these lines, future goal of the scientists will be to determine whether Par-1 contributes to ovarian cancer metastasis, or that of other carcinomas.

“Basic science results such as Montell’s have great value – points out Marina Mione, head of the IFOM program Genetic control of cell migration in zebrafish, and member of the Workshop’s Scientific Committee – as they pave the way for future clinical application. Devising new therapeutic approaches implies previous acquisition of solid scientific baseline information. Moving from observations acquired in physiological conditions Montell opens a number of new avenues that will promote our understanding of pathological conditions”.

Francesca Noceti | alfa
Further information:
http://www.semm.it/workshop/cellmig07/

Further reports about: Migration Montell ovarian signals

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>