Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lessons from ovarian cells migration: The three “Ws” of ovarian cancer spreading

14.05.2007
Who must go? When to go? Where to go? During development ovarian cells migrate in a spacial-temporal coordinated way, responding to specific signals that determine which cells have to move, when they have to move, and where they have to go.

The same types of signals stimulate migration of ovarian cancer cells, which follow specific signals to move from the female genital tract towards the peritoneum and stroma, where they form metastases. These findings were presented today (May 13th) by Denise Montell, Professor of Biological Chemistry at the Johns Hopkins University School of Medicine in Baltimore (Maryland), at the Workshop on Cell Migration: From Molecules to Organisms and Diseases promoted by the European School of Molecular Medicine (SEMM) and the University of Milan, in collaboration with IFOM – The FIRC Institute for Molecular Oncology of the Italian Foundation for Cancer Research, and IEO – European Institute of Oncology. Venue of the Workshop is the IFOM-IEO Campus (via Adamello, 16, Milan) that was recently opened and represents the biggest area dedicated to the oncological research in Europe.

Epithelial ovarian cancer (EOC) develops in the ovary, especially in the cells that cover the outer surface of this organ. As it scores 190,000 new cases each year worldwide (61,000 in Europe), it has fuelled intensive investigations all over the world. Denise Montell and her group have been studying cell migration for years, in the attempt to elucidate the key elements that govern their movement. To this purpose the scientists have set up a system called “border cells model”, employing fruit fly (Drosophila melanogaster) cells, which has led to the identification of specific regulatory signals that cells respond to. “Epithelial cells migrate in a way that is reminiscent of the migratory behavior of cancer cells - explains the scientists – and this moving is highly coordinated as it responds to extracellular signals present in the surrounding microenvironment. Using our experimental model we were able to identify three kinds of signals.”

They are:

... more about:
»Migration »Montell »ovarian »signals
- When: steroid hormones dictate the time when cells must start moving;
- Where: Growth Factors show them the right direction;
- Who: compounds called cytokines determine which cells will acquire mobility.

“Each of these signals – continues Montell – must work together in order for the cells to proceed to their correct destination. But they are not the only ones”. Further investigations into the signaling pathway of ovarian cells, in fact, led Montell to identify Par-1 as a key gene that controls cells migration. “We found – says Montell – that Par-1 regulates the detachment of cells from the epithelium and a critical step in releasing the cells from the original tissue”. Along these lines, future goal of the scientists will be to determine whether Par-1 contributes to ovarian cancer metastasis, or that of other carcinomas.

“Basic science results such as Montell’s have great value – points out Marina Mione, head of the IFOM program Genetic control of cell migration in zebrafish, and member of the Workshop’s Scientific Committee – as they pave the way for future clinical application. Devising new therapeutic approaches implies previous acquisition of solid scientific baseline information. Moving from observations acquired in physiological conditions Montell opens a number of new avenues that will promote our understanding of pathological conditions”.

Francesca Noceti | alfa
Further information:
http://www.semm.it/workshop/cellmig07/

Further reports about: Migration Montell ovarian signals

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>