Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists encourage cells to make a meal of Huntington's disease

09.05.2007
Scientists have developed a novel strategy for tackling neurodegenerative diseases such as Huntington's disease: encouraging an individual's own cells to "eat" the malformed proteins that lead to the disease.

Huntington's disease is one of a number of degenerative diseases marked by clumps of malformed protein in brain cells. Symptoms include abnormal movements, psychiatric disturbances like depression and a form of dementia. The gene responsible for the disease was discovered in 1993, leading to a better understanding of the condition and to improved predictive genetic testing, but it has yet to lead to any treatments that slow the neurodegeneration in Huntington's patients.

Professor David Rubinsztein, a Wellcome Trust Senior Clinical Fellow at the University of Cambridge, has been studying the molecular biology underlying Huntington's and other neurodegenerative diseases. Huntington's occurs when a protein known as huntingtin builds up in the brain cells of patients, mainly in neurons in the basal ganglia and in the cerebral cortex. Normally, cells dispose of or recycle their waste material, including unwanted or mis-folded proteins, through a process known as autophagy, or "self-eating".

"We have shown that stimulating autophagy in the cells – in other words, encouraging the cells to eat the malformed huntingtin proteins – can be an effective way of preventing them from building up," says Professor Rubinsztein. "This appears to stall the onset of Huntington's-like symptoms in fruit fly and mice, and we hope it will do the same in humans."

Autophagy can be induced in mouse and fly models by administering the drug rapamycin, an antibiotic used as an immunosuppressant for transplant patients. However, administered over the long term, the drug has some side effects and Rubinsztein and colleagues are aiming to find safer ways of inducing autophagy long term.

Now, Professor Rubinsztein, together with Professor Stuart Schreiber’s lab at the Broad Institute of Harvard/MIT, Boston in the US, and Dr Cahir O’Kane’s group in the Department of Genetics at the University of Cambridge have found a way of identifying novel "small molecules" capable of inducing autophagy. The research is published today in the journal Nature Chemical Biology.

The screening process involves identifying small molecules that enhance or suppress the ability of rapamycin to slow the growth of yeast, though the selected molecules have no effects on yeast growth by themselves. Yeast is a single-celled organism and therefore less complex to study for initial screening purposes.

Three of the molecules that enhanced the growth-suppressing effects of rapamycin in yeast were also found to induce autophagy by themselves in mammalian cells independent of the action of rapamycin. These molecules enhanced the ability of the cells to dispose of mutant huntingtin in cell and fruit fly models and protect against its toxic effects.

"These compounds appear to be promising candidates for drug development," says Professor Rubinsztein. "However, even if one of the candidates does prove to be successful, it will be a number of years off becoming available as a treatment. In order for such drugs to be useful candidates in humans, we will need to be able to get them into right places in the right concentrations, and with minimal toxicity. These are some of the issues we need to look at now."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

Further reports about: Huntington' Molecules Rapamycin Rubinsztein autophagy

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>