Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists encourage cells to make a meal of Huntington's disease

Scientists have developed a novel strategy for tackling neurodegenerative diseases such as Huntington's disease: encouraging an individual's own cells to "eat" the malformed proteins that lead to the disease.

Huntington's disease is one of a number of degenerative diseases marked by clumps of malformed protein in brain cells. Symptoms include abnormal movements, psychiatric disturbances like depression and a form of dementia. The gene responsible for the disease was discovered in 1993, leading to a better understanding of the condition and to improved predictive genetic testing, but it has yet to lead to any treatments that slow the neurodegeneration in Huntington's patients.

Professor David Rubinsztein, a Wellcome Trust Senior Clinical Fellow at the University of Cambridge, has been studying the molecular biology underlying Huntington's and other neurodegenerative diseases. Huntington's occurs when a protein known as huntingtin builds up in the brain cells of patients, mainly in neurons in the basal ganglia and in the cerebral cortex. Normally, cells dispose of or recycle their waste material, including unwanted or mis-folded proteins, through a process known as autophagy, or "self-eating".

"We have shown that stimulating autophagy in the cells – in other words, encouraging the cells to eat the malformed huntingtin proteins – can be an effective way of preventing them from building up," says Professor Rubinsztein. "This appears to stall the onset of Huntington's-like symptoms in fruit fly and mice, and we hope it will do the same in humans."

Autophagy can be induced in mouse and fly models by administering the drug rapamycin, an antibiotic used as an immunosuppressant for transplant patients. However, administered over the long term, the drug has some side effects and Rubinsztein and colleagues are aiming to find safer ways of inducing autophagy long term.

Now, Professor Rubinsztein, together with Professor Stuart Schreiber’s lab at the Broad Institute of Harvard/MIT, Boston in the US, and Dr Cahir O’Kane’s group in the Department of Genetics at the University of Cambridge have found a way of identifying novel "small molecules" capable of inducing autophagy. The research is published today in the journal Nature Chemical Biology.

The screening process involves identifying small molecules that enhance or suppress the ability of rapamycin to slow the growth of yeast, though the selected molecules have no effects on yeast growth by themselves. Yeast is a single-celled organism and therefore less complex to study for initial screening purposes.

Three of the molecules that enhanced the growth-suppressing effects of rapamycin in yeast were also found to induce autophagy by themselves in mammalian cells independent of the action of rapamycin. These molecules enhanced the ability of the cells to dispose of mutant huntingtin in cell and fruit fly models and protect against its toxic effects.

"These compounds appear to be promising candidates for drug development," says Professor Rubinsztein. "However, even if one of the candidates does prove to be successful, it will be a number of years off becoming available as a treatment. In order for such drugs to be useful candidates in humans, we will need to be able to get them into right places in the right concentrations, and with minimal toxicity. These are some of the issues we need to look at now."

Craig Brierley | EurekAlert!
Further information:

Further reports about: Huntington' Molecules Rapamycin Rubinsztein autophagy

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>