Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent nanoparticles serve as flashlights in living cells

09.05.2007
Scientists from the University of Twente, The Netherlands, have successfully exploited the optical properties of fluorescent nanoparticles to broaden the scope of single-cell microscopy. By using nanoparticles, they succeeded in combining two different optical microscopy techniques on the same cell. This opens exciting new possibilities for cellular imaging. Henk-Jan van Manen and Cees Otto from the Biophysical Engineering Group of the MESA+ Institute for Nanotechnology describe their results in Nano Letters.

The ‘quantum dot’ nanoparticles used by Van Manen and Otto replace existing fluorescent labels that are employed to enable the cell’s biomolecules to light up under the microscope. While fluorescence microscopy continues to be instrumental in unraveling the intricate biological processes that take place inside living cells, it would be even more informative to combine it with the intracellular chemical analysis capabilities of vibrational spectroscopy techniques such as Raman microscopy.

Common fluorescent labels are not suitable for this combination, however, because the much stronger fluorescence overshadows the intrinsic weak Raman signals coming from cells. By taking fluorescent quantum dots that emit light in a wavelength region that is well-separated from Raman signals, the Dutch researchers now show that fluorescence microscopy can indeed be combined with Raman microscopy on the same cell.

Vibrations inside cells

Techniques based on vibrational spectroscopy are able to detect the specific vibrations that occur inside the cell’s biomolecules (such as DNA, proteins, and lipids), making them very powerful tools for ‘chemical fingerprinting’ of cells. In contrast to fluorescence microscopy, vibrational spectroscopy does not require the biomolecules of interest to be labeled, which is a great advantage. The Biophysical Engineering Group at the University of Twente, headed by prof. Vinod Subramaniam, has pioneered the application of Raman spectroscopy to investigate the chemical make-up of single cells, and this group is now worldwide at the front of high-resolution chemical mapping of cells by Raman microscopy.

In their Nano Letters article, the researchers demonstrate two applications of the hybrid fluorescence Raman technique. By illuminating white blood cells with UV light at a wavelength of 413 nm, the Raman signal from an enzyme that is critical in the innate immune response can be detected and visualized across the cell. The fluorescence signal of quantum dot nanoparticles that have been ingested by the cells can be visualized separately. The second application employs light at a wavelength of 647 nm, which results in the separate detection of Raman signals from cellular proteins and lipids and the fluorescence signal from the nanoparticles.

Van Manen and Otto expect that the fluorescence Raman microscopy combination will provide exciting new possibilities: the nanoparticles might be coated on their surface with antibodies against, for example, marker proteins for cancer cells. In this way the quantum dots will serve as a torch for specific cells, which can subsequently be subjected to a detailed chemical analysis by using Raman microscopy.

The research described in the Nano Letters article was funded by the Landsteiner Foundation for Blood Transfusion Research (Amsterdam, The Netherlands) and the MESA+ Institute for Nanotechnology at the University of Twente.

Wiebe van der Veen | alfa
Further information:
http://bpe.tnw.utwente.nl/

Further reports about: Nano Raman fluorescence fluorescent nanoparticles spectroscopy

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>