Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent nanoparticles serve as flashlights in living cells

09.05.2007
Scientists from the University of Twente, The Netherlands, have successfully exploited the optical properties of fluorescent nanoparticles to broaden the scope of single-cell microscopy. By using nanoparticles, they succeeded in combining two different optical microscopy techniques on the same cell. This opens exciting new possibilities for cellular imaging. Henk-Jan van Manen and Cees Otto from the Biophysical Engineering Group of the MESA+ Institute for Nanotechnology describe their results in Nano Letters.

The ‘quantum dot’ nanoparticles used by Van Manen and Otto replace existing fluorescent labels that are employed to enable the cell’s biomolecules to light up under the microscope. While fluorescence microscopy continues to be instrumental in unraveling the intricate biological processes that take place inside living cells, it would be even more informative to combine it with the intracellular chemical analysis capabilities of vibrational spectroscopy techniques such as Raman microscopy.

Common fluorescent labels are not suitable for this combination, however, because the much stronger fluorescence overshadows the intrinsic weak Raman signals coming from cells. By taking fluorescent quantum dots that emit light in a wavelength region that is well-separated from Raman signals, the Dutch researchers now show that fluorescence microscopy can indeed be combined with Raman microscopy on the same cell.

Vibrations inside cells

Techniques based on vibrational spectroscopy are able to detect the specific vibrations that occur inside the cell’s biomolecules (such as DNA, proteins, and lipids), making them very powerful tools for ‘chemical fingerprinting’ of cells. In contrast to fluorescence microscopy, vibrational spectroscopy does not require the biomolecules of interest to be labeled, which is a great advantage. The Biophysical Engineering Group at the University of Twente, headed by prof. Vinod Subramaniam, has pioneered the application of Raman spectroscopy to investigate the chemical make-up of single cells, and this group is now worldwide at the front of high-resolution chemical mapping of cells by Raman microscopy.

In their Nano Letters article, the researchers demonstrate two applications of the hybrid fluorescence Raman technique. By illuminating white blood cells with UV light at a wavelength of 413 nm, the Raman signal from an enzyme that is critical in the innate immune response can be detected and visualized across the cell. The fluorescence signal of quantum dot nanoparticles that have been ingested by the cells can be visualized separately. The second application employs light at a wavelength of 647 nm, which results in the separate detection of Raman signals from cellular proteins and lipids and the fluorescence signal from the nanoparticles.

Van Manen and Otto expect that the fluorescence Raman microscopy combination will provide exciting new possibilities: the nanoparticles might be coated on their surface with antibodies against, for example, marker proteins for cancer cells. In this way the quantum dots will serve as a torch for specific cells, which can subsequently be subjected to a detailed chemical analysis by using Raman microscopy.

The research described in the Nano Letters article was funded by the Landsteiner Foundation for Blood Transfusion Research (Amsterdam, The Netherlands) and the MESA+ Institute for Nanotechnology at the University of Twente.

Wiebe van der Veen | alfa
Further information:
http://bpe.tnw.utwente.nl/

Further reports about: Nano Raman fluorescence fluorescent nanoparticles spectroscopy

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>