Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanoluminescence event yields novel emissions, reactions

09.05.2007
Researchers at the University of Illinois report that a new study of mechanoluminescence revealed extensive atomic and molecular spectral emission not previously seen in a mechanoluminescence event. The findings, which appear online this month in the Journal of the American Chemical Society, also include the first report of gas phase chemical reactions resulting from a mechanoluminescence event.
Mechanoluminescence is light generated when a crystal, such as sugar or quartz, is fractured by grinding, cleaving or via other mechanical means. Sir Francis Bacon wrote about this phenomenon as early as 1605. Others have used the effect to impress, if not enlighten, others.

"You may, when in the dark frighten simple people only by chewing lumps of sugar, and, in the meantime, keeping your mouth open, which will appear to them as if full of fire," Father Giambattista Beccaria wrote in "A Treatise Upon Artificial Electricity," in 1753.

Scientists believe mechanoluminescence occurs as a result of the generation of opposite charges along the fracture plane of an asymmetrical or impure crystal. When the charges recombine the surrounding gas is ionized and emits light.

Mechanoluminescence that results from simple grinding or cleavage of a crystal can be quite weak and difficult to study. Late last year, U. of I. chemistry professor Kenneth Suslick and graduate student Nathan Eddingsaas reported in the journal Nature that a new technique, the sonication of crystal slurries, produced a much more intense mechanoluminescence than grinding. Sonication, the use of sound energy to agitate particles or other substances, causes high intensity collisions of crystal particles in liquid slurries.

The resulting mechanoluminescence is an order of magnitude brighter than that produced by grinding.

Sonication of liquids causes acoustic cavitation: the formation, growth and implosion of bubbles. This generates tremendous heat, pressure and shockwaves within the liquid that can exceed the speed of sound. Crystal particles suspended in a sonicated liquid collide and fracture, causing intense mechanoluminescence.

The new study involved the sonication of a slurry of recorcinol
(sugar) crystals in the liquid paraffin, dodecane. When nitrogen or oxygen was bubbled through the sonicated slurry, the resulting emission spectrum was more than a thousand time more intense than that produced by grinding. The researchers also saw emission lines not previously reported in a mechanoluminescence event. These peaks on the mechanoluminescence spectra are evidence of gas phase chemical reactions during the event.

"When oxygen is present, chemical reactions take place that are similar to those that occur in the production of diamond films using an electrical discharge," Suslick said. "The intense mechanoluminescence and chemical reactions produced by ultrasound give us a better understanding of mechanoluminescence, mechanochemistry and the effect of ultrasound on solids within a liquid."

Editor's note: To reach Kenneth Suslick, call 217-333-2794; e-mail:
ksuslick@uiuc.edu.

News Bureau | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0508sonication.html

Further reports about: Emission chemical reaction mechanoluminescence produced

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Equipping form with function

23.06.2017 | Information Technology

New design improves performance of flexible wearable electronics

23.06.2017 | Materials Sciences

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>