Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanoluminescence event yields novel emissions, reactions

09.05.2007
Researchers at the University of Illinois report that a new study of mechanoluminescence revealed extensive atomic and molecular spectral emission not previously seen in a mechanoluminescence event. The findings, which appear online this month in the Journal of the American Chemical Society, also include the first report of gas phase chemical reactions resulting from a mechanoluminescence event.
Mechanoluminescence is light generated when a crystal, such as sugar or quartz, is fractured by grinding, cleaving or via other mechanical means. Sir Francis Bacon wrote about this phenomenon as early as 1605. Others have used the effect to impress, if not enlighten, others.

"You may, when in the dark frighten simple people only by chewing lumps of sugar, and, in the meantime, keeping your mouth open, which will appear to them as if full of fire," Father Giambattista Beccaria wrote in "A Treatise Upon Artificial Electricity," in 1753.

Scientists believe mechanoluminescence occurs as a result of the generation of opposite charges along the fracture plane of an asymmetrical or impure crystal. When the charges recombine the surrounding gas is ionized and emits light.

Mechanoluminescence that results from simple grinding or cleavage of a crystal can be quite weak and difficult to study. Late last year, U. of I. chemistry professor Kenneth Suslick and graduate student Nathan Eddingsaas reported in the journal Nature that a new technique, the sonication of crystal slurries, produced a much more intense mechanoluminescence than grinding. Sonication, the use of sound energy to agitate particles or other substances, causes high intensity collisions of crystal particles in liquid slurries.

The resulting mechanoluminescence is an order of magnitude brighter than that produced by grinding.

Sonication of liquids causes acoustic cavitation: the formation, growth and implosion of bubbles. This generates tremendous heat, pressure and shockwaves within the liquid that can exceed the speed of sound. Crystal particles suspended in a sonicated liquid collide and fracture, causing intense mechanoluminescence.

The new study involved the sonication of a slurry of recorcinol
(sugar) crystals in the liquid paraffin, dodecane. When nitrogen or oxygen was bubbled through the sonicated slurry, the resulting emission spectrum was more than a thousand time more intense than that produced by grinding. The researchers also saw emission lines not previously reported in a mechanoluminescence event. These peaks on the mechanoluminescence spectra are evidence of gas phase chemical reactions during the event.

"When oxygen is present, chemical reactions take place that are similar to those that occur in the production of diamond films using an electrical discharge," Suslick said. "The intense mechanoluminescence and chemical reactions produced by ultrasound give us a better understanding of mechanoluminescence, mechanochemistry and the effect of ultrasound on solids within a liquid."

Editor's note: To reach Kenneth Suslick, call 217-333-2794; e-mail:
ksuslick@uiuc.edu.

News Bureau | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0508sonication.html

Further reports about: Emission chemical reaction mechanoluminescence produced

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>