Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Illinois explore queen bee longevity

09.05.2007
The queen honey bee is genetically identical to the workers in her hive, but she lives 10 times longer and - unlike her sterile sisters - remains reproductively viable throughout life. A study from the University of Illinois sheds new light on the molecular mechanisms that account for this divergence. The study appears in the online edition of the Proceedings of the National Academy of Sciences.
The research centers on the interplay of three factors known to have a role in reproduction, growth and/or longevity. The first, vitellogenin (Vg), is a yolk protein important to reproduction but which also has been found to contribute to longevity in worker bees.

The second, juvenile hormone, contributes to growth and maturation.
The third, an insulin-IGF-1 signaling pathway, regulates aging, fertility and other important biological processes in invertebrates and vertebrates.

The study explores these factors in queen honey bees. How, the researchers wanted to know, could the queen achieve such a long life compared with her sisters while also devoting so much energy to reproduction?

"Many times the way organisms achieve longevity is via a tradeoff with reproduction," said entomology professor Gene Robinson, principal investigator on the study. "In general, life forms that postpone reproduction until later in life live longer. But the queen bee has her cake and eats it too. She's an egg-laying machine. She lays 2,000 eggs a day and yet lives 10 times longer than individuals that stem from the same genome and yet do not reproduce."

The researchers knew from studies of the fruit fly and nematode that the insulin-signaling pathway had a role in longevity. Down-regulation of insulin-IGF-1 signaling (IIS) in those species was associated with increases in longevity - but at the expense of fertility.

They also knew that manipulating fat body cells in the head of the fruit fly influenced longevity. Because Vg is synthesized in fat body cells in honey bees, the team decided to look at Vg expression in the head and thorax as well as the abdomen.

This led to an important discovery. Expression of Vg was high in the abdomen in the young queen and declined over time, but increased with age in the head and thorax. Old queens showed much higher Vg expression than young queens.

Worker bees had much lower levels of Vg expression than queens, and Vg in worker heads was also low compared with queens. Previous studies in workers had shown that Vg reduced oxidative stress in honey bees by scavenging free radicals that can lead to aging or illness. Not surprisingly, queens were more resistant to oxidative stress than workers.

Whether this is the actual mechanism by which queens achieve both fertility and long life remains to be seen, Robinson said. In any event, this study suggests that vitellogenin plays a vital role in queen bee longevity, he said, particularly since the honey bee lacks many antioxidants commonly found in other species.

"There are implications here (for other species) in the sense that here is an organism that is reproductively active and long-lived,"
said Robinson, who is also affiliated with the Institute for Genomic Biology. "And we see novel and conserved factors that are part of a large regulatory network. The queen has her cake and eats it too. And humans want to know how that works."

Editor's note: To reach Gene Robinson, call 217-333-6843; e-mail:
generobi@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0508queenbee.html

Further reports about: Reproduction longevity queen

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>