Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Illinois explore queen bee longevity

09.05.2007
The queen honey bee is genetically identical to the workers in her hive, but she lives 10 times longer and - unlike her sterile sisters - remains reproductively viable throughout life. A study from the University of Illinois sheds new light on the molecular mechanisms that account for this divergence. The study appears in the online edition of the Proceedings of the National Academy of Sciences.
The research centers on the interplay of three factors known to have a role in reproduction, growth and/or longevity. The first, vitellogenin (Vg), is a yolk protein important to reproduction but which also has been found to contribute to longevity in worker bees.

The second, juvenile hormone, contributes to growth and maturation.
The third, an insulin-IGF-1 signaling pathway, regulates aging, fertility and other important biological processes in invertebrates and vertebrates.

The study explores these factors in queen honey bees. How, the researchers wanted to know, could the queen achieve such a long life compared with her sisters while also devoting so much energy to reproduction?

"Many times the way organisms achieve longevity is via a tradeoff with reproduction," said entomology professor Gene Robinson, principal investigator on the study. "In general, life forms that postpone reproduction until later in life live longer. But the queen bee has her cake and eats it too. She's an egg-laying machine. She lays 2,000 eggs a day and yet lives 10 times longer than individuals that stem from the same genome and yet do not reproduce."

The researchers knew from studies of the fruit fly and nematode that the insulin-signaling pathway had a role in longevity. Down-regulation of insulin-IGF-1 signaling (IIS) in those species was associated with increases in longevity - but at the expense of fertility.

They also knew that manipulating fat body cells in the head of the fruit fly influenced longevity. Because Vg is synthesized in fat body cells in honey bees, the team decided to look at Vg expression in the head and thorax as well as the abdomen.

This led to an important discovery. Expression of Vg was high in the abdomen in the young queen and declined over time, but increased with age in the head and thorax. Old queens showed much higher Vg expression than young queens.

Worker bees had much lower levels of Vg expression than queens, and Vg in worker heads was also low compared with queens. Previous studies in workers had shown that Vg reduced oxidative stress in honey bees by scavenging free radicals that can lead to aging or illness. Not surprisingly, queens were more resistant to oxidative stress than workers.

Whether this is the actual mechanism by which queens achieve both fertility and long life remains to be seen, Robinson said. In any event, this study suggests that vitellogenin plays a vital role in queen bee longevity, he said, particularly since the honey bee lacks many antioxidants commonly found in other species.

"There are implications here (for other species) in the sense that here is an organism that is reproductively active and long-lived,"
said Robinson, who is also affiliated with the Institute for Genomic Biology. "And we see novel and conserved factors that are part of a large regulatory network. The queen has her cake and eats it too. And humans want to know how that works."

Editor's note: To reach Gene Robinson, call 217-333-6843; e-mail:
generobi@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0508queenbee.html

Further reports about: Reproduction longevity queen

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>