Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How to steer a moving cell

Researchers at the University of California, San Diego (UCSD) School of Medicine have developed new technology which, combined with proteomics – the large-scale study of the structure and function of proteins and their functions – has allowed them to map an extensive network of the signaling proteins that control cell movement.

Their work, providing the first comprehensive profile of cell movement, could lead to a better understanding of cell migration in cancer metastasis and inflammatory disease. The study will be published the week of May 7-11 in the journal Proceedings of the National Academy of Sciences (PNAS).

Extra-cellular messengers called chemokines are families of small proteins secreted by cells that regulate the cells’ directional movement, or chemotaxis. Cells possess an innate ability to migrate, an inner compass that somehow senses the presence of chemokines. But in metastasis, the cell’s inner compass goes awry – allowing cells to leave the primary tumor, crawl through tissues and enter blood vessels – spreading the cancer throughout the body.

Richard Klemke, Ph.D., professor of pathology at UCSD School of Medicine and the Moores Cancer Center, and his colleagues set out to better understand the complexity of signaling mechanisms within the cell that become de-regulated and allow cells which are usually static to begin migrating.

... more about:
»COMPASS »Klemke »Researcher »steer

The researchers hope to fully define the protein components of the compass to gain a better understanding of what directs cell migration or, in the case of cancer cells and inflammation, cause cells to migrate where they normally wouldn’t.

"The ability to spatially organize specific groups of signaling proteins to the front or back of the cell is what drives cell polarization and directional movement," said Klemke. "It is the steering wheel of the cell." Now the researchers want to determine how the large numbers of signaling molecules that make up the compass are functionally integrated to steer the cell under normal and pathological conditions.

"A surprising finding was that many of the proteins identified in the neuronal network, the ‘wiring diagram’ that controls early development of neural networks in the embryo, are also found to control the movement of normal and cancerous cells," said Klemke. "This is apparently a fundamental, evolutionarily conserved process in migrating cells. So it clearly has an important purpose to the cell."

A network of proteins called the cytoskeleton, the cell’s internal scaffolding, determines cell shape, helping the cell to grow and develop "growth cones." These are specialized structures at the tips of growing nerve fibers, called axons, which sense guidance signals in their environment and "steer" the axons. Cell movement also requires polarization to position the cell and help navigate its movement. Polarization is characterized by formation of a leading "false foot" or pseudopodium and a trailing rear "foot" at the back called a cell body, which is detached in the process of locomotion.

In order to understand the inner workings of the cell’s "steering wheel," the researchers developed a method to cross section the front and back of the chemotactic cell in order to analyze the components of its protein network. The cell fractionation equipment developed in Klemke’s lab is the first method to enable researchers to study the entire network of signaling proteins.

"To find out what goes wrong during metastasis, we need to understand how the signaling networks are controlled in normal healthy cells," said Klemke. "This is the first time a group of researchers from several disciplines – biologists, chemists, proteomics researchers and computational biologists who can integrate large data sets – have applied a global approach to analyzing how proteins regulate cell movement."

The research team’s profile of chemotactic cells is the first and most comprehensive catalog of proteins that exists to date, according to Yingchun Wang, a post-graduate researcher in the Klemke lab.

Debra Kain | EurekAlert!
Further information:

Further reports about: COMPASS Klemke Researcher steer

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>