Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to steer a moving cell

08.05.2007
Researchers at the University of California, San Diego (UCSD) School of Medicine have developed new technology which, combined with proteomics – the large-scale study of the structure and function of proteins and their functions – has allowed them to map an extensive network of the signaling proteins that control cell movement.

Their work, providing the first comprehensive profile of cell movement, could lead to a better understanding of cell migration in cancer metastasis and inflammatory disease. The study will be published the week of May 7-11 in the journal Proceedings of the National Academy of Sciences (PNAS).

Extra-cellular messengers called chemokines are families of small proteins secreted by cells that regulate the cells’ directional movement, or chemotaxis. Cells possess an innate ability to migrate, an inner compass that somehow senses the presence of chemokines. But in metastasis, the cell’s inner compass goes awry – allowing cells to leave the primary tumor, crawl through tissues and enter blood vessels – spreading the cancer throughout the body.

Richard Klemke, Ph.D., professor of pathology at UCSD School of Medicine and the Moores Cancer Center, and his colleagues set out to better understand the complexity of signaling mechanisms within the cell that become de-regulated and allow cells which are usually static to begin migrating.

... more about:
»COMPASS »Klemke »Researcher »steer

The researchers hope to fully define the protein components of the compass to gain a better understanding of what directs cell migration or, in the case of cancer cells and inflammation, cause cells to migrate where they normally wouldn’t.

"The ability to spatially organize specific groups of signaling proteins to the front or back of the cell is what drives cell polarization and directional movement," said Klemke. "It is the steering wheel of the cell." Now the researchers want to determine how the large numbers of signaling molecules that make up the compass are functionally integrated to steer the cell under normal and pathological conditions.

"A surprising finding was that many of the proteins identified in the neuronal network, the ‘wiring diagram’ that controls early development of neural networks in the embryo, are also found to control the movement of normal and cancerous cells," said Klemke. "This is apparently a fundamental, evolutionarily conserved process in migrating cells. So it clearly has an important purpose to the cell."

A network of proteins called the cytoskeleton, the cell’s internal scaffolding, determines cell shape, helping the cell to grow and develop "growth cones." These are specialized structures at the tips of growing nerve fibers, called axons, which sense guidance signals in their environment and "steer" the axons. Cell movement also requires polarization to position the cell and help navigate its movement. Polarization is characterized by formation of a leading "false foot" or pseudopodium and a trailing rear "foot" at the back called a cell body, which is detached in the process of locomotion.

In order to understand the inner workings of the cell’s "steering wheel," the researchers developed a method to cross section the front and back of the chemotactic cell in order to analyze the components of its protein network. The cell fractionation equipment developed in Klemke’s lab is the first method to enable researchers to study the entire network of signaling proteins.

"To find out what goes wrong during metastasis, we need to understand how the signaling networks are controlled in normal healthy cells," said Klemke. "This is the first time a group of researchers from several disciplines – biologists, chemists, proteomics researchers and computational biologists who can integrate large data sets – have applied a global approach to analyzing how proteins regulate cell movement."

The research team’s profile of chemotactic cells is the first and most comprehensive catalog of proteins that exists to date, according to Yingchun Wang, a post-graduate researcher in the Klemke lab.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: COMPASS Klemke Researcher steer

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>