Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn neurons like to hang with the 'in' crowd

08.05.2007
Like any new kid on the block that tries to fit in, newborn brain cells need to find their place within the existing network of neurons. The newcomers jump right into the fray and preferentially reach out to mature brain cells that are already well connected within the established circuitry, report scientists at the Salk Institute for Biological Studies in the online edition of Nature Neuroscience.

At first, they gingerly sniff out pre-existing connections between brain cells but as the new neurons mature over time they get emboldened and muscle out the old guys. "Adding new neurons could be a very problematic process if newborn cells would make connections all over the place," explains Fred H. Gage, Ph.D., a professor in the Gene Expression Laboratory and the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases. "But if they are only replacing already existing connections there is less chance of error," he adds.

Neurons make contact via specialized structures called synapses. As a signal traveling along a nerve branch arrives at the pre-synaptic area, it releases a chemical signal. The signaling molecules travel across the synapse and induce a signal on the neighboring, receiving nerve fiber or dendrite. A typical neuron sports about 7,000 synapses through which it stays in touch with roughly 1,000 other cells. But just how young neurons make their presence known and hook up with already well-connected elders has been unclear.

"If you have hopes that one day neuronal stem cells can replace damaged neurons in neurodegenerative diseases such as Alzheimer's or Parkinson's disease you have to ensure that these cells make proper connections, form functional synapses and integrate into the rest of the brain," says postdoctoral fellow Nicolas Toni, Ph.D., who headed the current study.

... more about:
»Neuron »Synapse »brain cell »newborn

To figure out how the newcomers do it, the Salk researchers injected a virus carrying the gene for green fluorescent protein into the hippocampus, a brain region harboring neural stem cells that give rise to new neurons. Newly born neurons infected with virus were marked by a fluorescent dye enabling the researchers to follow their fate over time as they tried to get accepted into the existing circuitry.

With the help of a whole arsenal of high-tech imaging technology and the electron tomography expertise of Mark. H. Ellisman, Ph.D., a professor at the National Center for Microscopy and Imaging Research at the University of California, San Diego, Toni then zoomed in at a nanometer scale and watched how the young and the old got acquainted.

He observed that between three and four weeks after injection of the virus newborn neurons sent out dendritic filopodia—tiny feelers that probe the environment. "When we analyzed them in three dimensions, the tip of the filopodia was preferentially associated with synapses already connected to other neurons," explains Toni.

However, as the new neurons matured, the tiny tips filled out and started to monopolize the synaptic connections. "That's what we believe is the crux of the study: the survival of new neurons may depend on the ability to compete out the older existing neurons," says Gage. Earlier studies had shown that if young neurons fail to receive signals from other brain cells they wither and die. By connecting to functional synapses, the newborn neurons ensure that they are not reaching out to deadbeats.

The Gage lab previously identified a subunit of the NMDA receptor, a protein complex that transduces signals sent by neighboring cells, as the newborn neurons' life-saving equipment. The NMDA receptor is activated by the neurotransmitter glutamate, a chemical released by neurons in order to transmit information to neighboring cells. Whenever the receptor picks up a glutamate signal it is stimulated and relays the signal. For young neurons that signal means survival.

As a matter of fact, only about half of all newly born neurons manage to successfully integrate into the existing network of brain cells, at least in mice living in bare standard cages. Providing the mice with a stimulating, enriched environment—large cages filled with running wheels, colored tunnels and playmates—boost the number of neurons that manage to hook up with the existing network to 80 percent, reinforcing the observation that using one's brain cells is the best way to optimize brain function throughout one's lifetime.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Neuron Synapse brain cell newborn

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>