Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SUMO wrestling in the brain

08.05.2007
Increasing the amount of SUMO, a small protein in the brain, could be a way of treating diseases such as epilepsy and schizophrenia, reveal scientists at the University of Bristol, UK. Their findings are published online today in Nature.

The brain contains about 100 million nerve cells, each having 10,000 connections to other nerves cells. These connections, called synapses, chemically transmit the information that controls all brain function via proteins called receptors. These processes are believed to be the basis of learning and memory.

A major feature of a healthy brain is that the synapses can modify how efficiently they work, by increasing or decreasing the amount of information transmitted. In disorders such as epilepsy the synapses transmit too much information, resulting in over-excitation in the cells.

The research team, led by Professor Jeremy Henley at Bristol University, has discovered that when one type of receptor – the kainate receptor – receives a chemical signal, a small protein called SUMO becomes attached to it. SUMO pulls the kainate receptor out of the synapse, preventing it from receiving information from other cells, thus making the cell less excitable.

... more about:
»Brain »SUMO »Synapse

Professor Henley said: “This work is important because it gives a new perspective and a deeper understanding of how the flow of information between cells in the brain is regulated. It is possible that increasing the amount of SUMO attached to kainate receptors – which would reduce communication between the cells – could be a way to treat epilepsy by preventing over-excitation.”

The discovery that SUMO proteins can regulate the way brain cells communicate may provide insight into the causes of, and treatments for, brain diseases that are characterised by too much synaptic activity. This discovery also provides new potential targets for drug development that could one day be used to treat a range of such disorders.

This research was funded by the Medical Research Council, the Wellcome Trust and the European Union.

Cherry Lewis | alfa
Further information:
http://dx.doi.org/10.1038/nature05736
http://www.bris.ac.uk/fluff/u/inclel/ehD3Zu36f7FIcUMuADwa6gpy/

Further reports about: Brain SUMO Synapse

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>