Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SUMO wrestling in the brain

08.05.2007
Increasing the amount of SUMO, a small protein in the brain, could be a way of treating diseases such as epilepsy and schizophrenia, reveal scientists at the University of Bristol, UK. Their findings are published online today in Nature.

The brain contains about 100 million nerve cells, each having 10,000 connections to other nerves cells. These connections, called synapses, chemically transmit the information that controls all brain function via proteins called receptors. These processes are believed to be the basis of learning and memory.

A major feature of a healthy brain is that the synapses can modify how efficiently they work, by increasing or decreasing the amount of information transmitted. In disorders such as epilepsy the synapses transmit too much information, resulting in over-excitation in the cells.

The research team, led by Professor Jeremy Henley at Bristol University, has discovered that when one type of receptor – the kainate receptor – receives a chemical signal, a small protein called SUMO becomes attached to it. SUMO pulls the kainate receptor out of the synapse, preventing it from receiving information from other cells, thus making the cell less excitable.

... more about:
»Brain »SUMO »Synapse

Professor Henley said: “This work is important because it gives a new perspective and a deeper understanding of how the flow of information between cells in the brain is regulated. It is possible that increasing the amount of SUMO attached to kainate receptors – which would reduce communication between the cells – could be a way to treat epilepsy by preventing over-excitation.”

The discovery that SUMO proteins can regulate the way brain cells communicate may provide insight into the causes of, and treatments for, brain diseases that are characterised by too much synaptic activity. This discovery also provides new potential targets for drug development that could one day be used to treat a range of such disorders.

This research was funded by the Medical Research Council, the Wellcome Trust and the European Union.

Cherry Lewis | alfa
Further information:
http://dx.doi.org/10.1038/nature05736
http://www.bris.ac.uk/fluff/u/inclel/ehD3Zu36f7FIcUMuADwa6gpy/

Further reports about: Brain SUMO Synapse

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>