Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So you are a “nightowl”? The After-hours gene might be the reason why.

07.05.2007
In a paper just published in “Science magazine” scientists report a genetic mutation, appropriately called "after-hours" (Afh), which affects our internal body clock and might help explain why some of us are “evening people”, only falling asleep in the early hours of the morning.

The research has important implications for human health in an increasingly 24/7 culture, where shift work and continental travel (and the associated jet lag problems) are already linked to several diseases. It can also be important for the many brain disorders, such as dementia, bipolar disease and mental retardation, which are associated to disruptions in the sleep/awake cycle.

The earth moves on a 24-hours cycle and also (roughly) all plants and animals. This is the result of our internal body clock that follows a circadian pattern (circadian means “approximately one day”) and controls the physiological processes of all living organisms. The heart of the clock is located in the hypothalamus and regulation of the body is done through a range of hormonal and neural signals in response to direct input from the retina. By anticipating the living conditions, biological clocks allow animals to achieve maximum fitness through a better exploration of their environment, whatever finding food, reproducing or just being awake during those hours when the sun is out, allowing, for example, vitamin D production by human skin cells. But in our society, characterised by increasingly altered sleep/awake rhythms, a 24-hour endogenous cycle can become a disadvantage and lead to disease when constantly disturbed. And in fact, night shift workers are believed to have increased levels of cancer probably due to constant tiredness, which is known to affect the immune system. As consequence, to understand how the internal body clock works and what are the genes involved in the process is crucial for human health.

With this aim Sofia I. H. Godinho, Elizabeth S. Maywood, Patrick M. Nolan and colleagues at the Mammalian Genetics Unit in Harwell, Oxfordshire, the MRC Laboratory of Molecular Biology, Hills Road, Cambridge and the New York University School of Medicine, USA have been monitoring randomly mutated mice looking for alterations in their daily rhythm so they could then identify the mutated circadian genes.

... more about:
»AFH »Godinho »Maywood »PER »circadian »internal »rhythm

And in the study now published the team of researchers report the discovery of mice with abnormally long circadian periods, lasting approximately 27 hours, in contrast with the 23.6 hours cycle of normal mice. Through animal crossing and genetic analysis Godinho, Maywood, Nolan and colleagues managed to find that the mutation, which they called “after-hours” (Afh), was located in the gene Fbxl3, a gene until now not known to be linked to the circadian cycle. A second study lead by Michele Pagano of the New York University School of Medicine, USA, published in the same issue of Science, showed that the Fbxl3 binds and drives the degradation of a clock protein called Cryptochrome (CRY).

In fact, the internal body clock functions as a collection of biochemical reactions where circadian genes exist in a constant regulatory loop of positive and negative feedbacks. The protein CRY is part of one of those circadian loops together with another protein called Period (PER) and the genes Clock and Bmal1. These two genes –part of the first circadian genes to be identified in mammals - produce transcription factors (transcription factors are proteins that bind DNA inhibiting or activating genes) that activate PER and CRY production. As these two proteins accumulate within the cell they inhibit Clock and Bmal1 activity and consequently also their own production. As the day progresses PER and CRY are degraded releasing the inhibition and again leading to the production of transcription factors, more CRY and PER and so on in constant cycles.

Following Pagano and colleagues’ observations Godinho, Maywood and colleagues looked at CRY protein in Afh mutated mice to find that these animals had a much slower CRY degradation rate what could explain the longer circadian cycles.

In conclusion, the work by Godinho, Maywood and colleagues identifies Fbxl3 as a new gene involved in the mammalian circadian rhythm and shows that the mutation Afh by disrupting CRY protein degradation, delays the circadian regulatory loops and, in this way, extends the circadian cycle of mutated animals. Now, using these results and by relying on the homology of mammals genes the next step is to find the corresponding gene/mutation in humans and its association with disease.

As Godinho, a Portuguese scientist and one of the first author of the work says, “Once we identify an abnormal gene we can then proceed to study the human homologue by screening the extreme types in the human population looking for defects in the same gene. Once this has been established, pharmaceutical companies may then use this information to study this class of genes and proteins as potential therapeutical targets”

And in a society moving steadily towards a 24/7 culture, where abnormal daily rhythms are becoming the norm, to understand the complex genetics behind circadian systems is no doubt becoming more and more relevant to human health, behaviour and quality of life.

Piece researched and written by: Catarina Amorim ( catarina.amorim@linacre.ox.ac.uk)

Patrick Nolan- p.nolan@har.mrc.ac.uk

Catarina Amorim | alfa
Further information:
http://www.sciencemag.org/cgi/content/abstract/1141138v2

Further reports about: AFH Godinho Maywood PER circadian internal rhythm

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>