Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some degenerative diseases prove similar at the molecular level

07.05.2007
Alzheimer’s disease, Parkinson’s disease, type 2 diabetes, the human version of mad cow disease (Creutzfeldt-Jakob disease), and other degenerative diseases are more closely related at the molecular level than many scientists realized, an international team of researchers, including an ESRF researcher, report in the journal Nature.

The brains of patients with these diseases contain harmful rope-like structures known as amyloid fibrils, which are protein molecules linked by water-tight “molecular zippers”.

“We have shown that the fibrils have a common atomic-level structure,” said David Eisenberg, a UCLA-DOE professor of chemistry and biology and a member of the research team. “All of these diseases are similar at the molecular level; all of them have a dry steric zipper. With each disease, a different protein transforms into amyloid fibrils, but the proteins are very similar at the atomic level.”

The UCLA team, together with scientists from the University of Copenhagen and the ESRF, carried out part of their research at the microfocus beamline at the ESRF, where they used a very small beam of X-rays to study micro-crystals. “It has been a great international collaboration,” Eisenberg said.

... more about:
»Amyloid »fibril »zipper

The research, while still preliminary, could help scientists develop tools for diagnosing these diseases, and potentially for treating them through “structure-based drug design,” said Eisenberg.

The researchers report 11 new three-dimensional structures of fibril forming segments, including those for both of the main proteins that form amyloid fibrils in Alzheimer’s disease.

“It has been a joy to see so many new structures,” said Michael Sawaya, member of the team. “We see many similarities, but some details are different. As we study more structures, we expect to determine the common features among them”.

“It is clear from the positions of the atoms where the zipper is,” Sawaya added. “Like pieces in a jigsaw puzzle, they have to fit together just right. We are finding out how they fit together. We don’t yet know all the ways of forming the zippers; we are working to fill in the missing pieces and are hopeful of doing so.”

The research shows that very short segments of proteins are involved in forming amyloid fibrils; Eisenberg and his colleagues know some of the segments. Knowing the segments makes it easier to design tests to detect whether a new drug is effective, Eisenberg noted. Several of the disease-related proteins contain more than one amyloid fibril-forming segment.

If the molecular zipper is universal in amyloid fibrils, as Eisenberg believes, is it possible to pry open the zipper or prevent its formation? The team can now produce fibrils and has developed a test to determine whether the fibrils break up, using a wide variety of chemical compounds. This strategy could be potentially used to break up the fibrils.

A mystery on which the new Nature paper sheds light is what causes different strains of prions (infectious proteins) in which the protein sequence is identical. Scientists present a strong hypothesis that the origin of prion strains is encoded in the packing of the molecules in the fibrils.

In an earlier Nature paper (9 June 2005), Eisenberg and his colleagues presented the three-dimensional structure of an amyloid-like protein from yeast that revealed the surprising molecular zipper.“In 2005, we were like prospectors who found flakes of gold in a stream,” Eisenberg said. “Now we see the real nuggets. In this paper, we present atomic-level structures for crystals related to fibrils from proteins associated with numerous human diseases.”

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/pressreleases/disease/

Further reports about: Amyloid fibril zipper

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>