Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infectious activation drives cell division

07.05.2007
Scientists at the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL) in Amsterdam have discovered that once active, the enzyme Cyclin B1-Cdk1 commits a growing cell to the process of mitotic cell division and chromosome separation.

Mitosis is irreversible, only leading either to correct cell division or to genomically instable G1 cells, prone to cell death. The work of Dr. Rob Wolthuis was published in PLoS Biology, May issue.

Cyclin B1-Cdk1 activation is controlled in many ways, but once its activity rises above a certain level, further activation of Cyclin B1-Cdk1 is catalyzed by a positive-feedback loop. This triggers the start of mitosis. It is therefore critical to understand how Cyclin B1-Cdk1 can switch from an inactive to an active state. So far, no methods were available to measure how Cyclin B1–Cdk1 activity progresses in human cells over time.

Wolthuis his work combines activation measurements with a kinetic model to study how Cyclin B1-Cdk1 activity accumulates just before and during mitosis in human cells. He discovered that once Cyclin B1-Cdk1 activation is truly launched, it is bound to continue and will not lightly drop back again. Also different activity levels are required for initiation of, and progression through, mitosis.

... more about:
»B1-Cdk1 »Cyclin »Division »activation

On the basis of the findings, Wolthuis proposes that the successive Cyclin B1–Cdk1 activity levels by themselves may coordinate the progression through the distinct phases of the cell division process.

Frederique Melman | alfa
Further information:
http://www.nki.nl

Further reports about: B1-Cdk1 Cyclin Division activation

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>