Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matter of force

04.05.2007
Researchers work out the mechanics of asymmetric cell division

When a cell divides, normally the result is two identical daughter cells. In some cases however, cell division leads to two cells with different properties. This is called asymmetric cell division and plays an important role in embryonic development and the self-renewal of stem cells. Researchers from the European Molecular Biology Laboratory (EMBL) have now worked out the mechanism underlying asymmetric cell division in nematode worms. The study, which is published in the current issue of Cell, reveals that interactions between the mitotic spindle and the cell cortex are crucial for asymmetric division.

Soon after the egg cell has been fertilized, the developing embryo of the nematode worm Caenorhabditis elegans undergoes its first cell division. The division gives rise to a bigger cell at the anterior end of the embryo, where the head will develop, and a smaller cell at the posterior end. For this asymmetric division to take place, the mitotic spindle, the apparatus that separates a cell’s chromosomes, needs to be located not centrally but towards the posterior of the egg. The cellular structures that make sure the spindle gets to the right place are protein filaments called microtubules. They are dynamic structures that constantly grow and shrink by adding on or taking off individual building blocks.

“Just before cell division the mitotic spindle moves towards the posterior of the cell while oscillating up and down,” says François Nédélec, group leader at EMBL. “We wanted to find out the mechanisms of this motion and explore its properties.”

Nédélec and his group combined computer simulations with microscopy studies to test the predictions made about microtubule behaviour experimentally. This approach revealed that the interaction of the microtubules forming the mitotic spindle and the cell cortex, a structure lining the cell just beneath the plasma membrane, most likely brings about the correct positioning of the spindle towards the posterior of the cell. The microtubules grow until they reach the borders of the cell and touch the cortex. Upon contact with the cortex, the filaments immediately start to shrink.

“This shrinkage is then translated into a pulling force at the cortex,” says Cleopatra Kozlowski from Nédélec’s group, who carried out the research together with Martin Srayko from the Max Planck Institute of Molecular Cell Biology and Genetics. “How exactly this works we don’t know yet. One possibility could be that part of the cortex holds on to the microtubule while it shortens, and so pulls on the whole spindle.”

The nature of so-called force generators on the cortex is yet unclear, as is the question if more of them are active at the posterior to give more net force in that direction. But computer simulations show that the concept of force generators that translate the dynamic behaviour of microtubules into a pulling force can explain the specific movements of the mitotic spindle.

The same principle might apply also to asymmetric cell division in other organisms and contexts, such as stem cell renewal. The cellular components involved in such divisions have been conserved throughout evolution making it likely that different species might also share the mechanism of the process.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/04may07/index.html

Further reports about: Cortex asymmetric microtubule mitotic posterior spindle

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>