Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matter of force

04.05.2007
Researchers work out the mechanics of asymmetric cell division

When a cell divides, normally the result is two identical daughter cells. In some cases however, cell division leads to two cells with different properties. This is called asymmetric cell division and plays an important role in embryonic development and the self-renewal of stem cells. Researchers from the European Molecular Biology Laboratory (EMBL) have now worked out the mechanism underlying asymmetric cell division in nematode worms. The study, which is published in the current issue of Cell, reveals that interactions between the mitotic spindle and the cell cortex are crucial for asymmetric division.

Soon after the egg cell has been fertilized, the developing embryo of the nematode worm Caenorhabditis elegans undergoes its first cell division. The division gives rise to a bigger cell at the anterior end of the embryo, where the head will develop, and a smaller cell at the posterior end. For this asymmetric division to take place, the mitotic spindle, the apparatus that separates a cell’s chromosomes, needs to be located not centrally but towards the posterior of the egg. The cellular structures that make sure the spindle gets to the right place are protein filaments called microtubules. They are dynamic structures that constantly grow and shrink by adding on or taking off individual building blocks.

“Just before cell division the mitotic spindle moves towards the posterior of the cell while oscillating up and down,” says François Nédélec, group leader at EMBL. “We wanted to find out the mechanisms of this motion and explore its properties.”

Nédélec and his group combined computer simulations with microscopy studies to test the predictions made about microtubule behaviour experimentally. This approach revealed that the interaction of the microtubules forming the mitotic spindle and the cell cortex, a structure lining the cell just beneath the plasma membrane, most likely brings about the correct positioning of the spindle towards the posterior of the cell. The microtubules grow until they reach the borders of the cell and touch the cortex. Upon contact with the cortex, the filaments immediately start to shrink.

“This shrinkage is then translated into a pulling force at the cortex,” says Cleopatra Kozlowski from Nédélec’s group, who carried out the research together with Martin Srayko from the Max Planck Institute of Molecular Cell Biology and Genetics. “How exactly this works we don’t know yet. One possibility could be that part of the cortex holds on to the microtubule while it shortens, and so pulls on the whole spindle.”

The nature of so-called force generators on the cortex is yet unclear, as is the question if more of them are active at the posterior to give more net force in that direction. But computer simulations show that the concept of force generators that translate the dynamic behaviour of microtubules into a pulling force can explain the specific movements of the mitotic spindle.

The same principle might apply also to asymmetric cell division in other organisms and contexts, such as stem cell renewal. The cellular components involved in such divisions have been conserved throughout evolution making it likely that different species might also share the mechanism of the process.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/04may07/index.html

Further reports about: Cortex asymmetric microtubule mitotic posterior spindle

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>