Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of damaged gene gives insight into causes of mental illness

03.05.2007
Scientists have pinpointed how different types of damage to the same gene can cause some people to suffer from schizophrenia while others have major depression

Scientists have pinpointed how different types of damage in types of damage to the same gene can cause some people to suffer from schizophrenia while others have major depression.

The findings which are published in the journal Neuron, provide further evidence that these illnesses are inherited, and may in the future help doctors pinpoint which patients will respond to different types of treatments.

Experts from the University of Edinburgh, working with researchers from Mount Sinai Hospital in Toronto, Canada and RIKEN in Japan, studied two types of damage to a gene (DISC1). Previous research at the University, working with families with a high incidence of mental illness, identified this gene as being linked to schizophrenia, manic depression (bipolar affective disorder) and major depression. The gene was also found to be essential for brain signalling and plays a key role in learning, memory and mood.

... more about:
»DISC1 »Depression »Mental »disorder »schizophrenia »types

To further their findings, experts looked at the behaviour of mice with two types of damage in the gene. The results suggest that one responded better to antipsychotics, used to treat schizophrenia while the other responded better to anti-depressants, used to treat mood disorders.

Prof David Porteous, Chair of Human Molecular Genetics and Medicine at the University of Edinburgh, said: “While the causes of schizophrenia, bipolar affective disorder and major depression are unknown, all the evidence points to subtle differences in the way the brain develops and to chemical changes in the brain. Our previous work identified the DISC1 gene as an important risk factor in these types of mental illness.

“By analysing the behaviour of mice, we were able to provide further evidence of the importance of DISC1. We also found remarkable clear cut differences between the different types of damage to the gene and the treatment that was the most effective. By analysing how the brain changes and develops over time we would hope that this would lead to more effective drugs to treat such illnesses.”

About one in 50 people worldwide will develop the symptoms of schizophrenia or bipolar affective disorder, with the first signs often appearing in late adolescence or early adulthood. Most cases arise in families with some sort of history of mental illness implying a strong influence of genes. Several different genes have been reported to pre-dispose to schizophrenia but DISC1 is one of the few which has been replicated by several laboratories.

Tara Womersley | EurekAlert!
Further information:
http://www.ed.ac.uk

Further reports about: DISC1 Depression Mental disorder schizophrenia types

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>