Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of damaged gene gives insight into causes of mental illness

03.05.2007
Scientists have pinpointed how different types of damage to the same gene can cause some people to suffer from schizophrenia while others have major depression

Scientists have pinpointed how different types of damage in types of damage to the same gene can cause some people to suffer from schizophrenia while others have major depression.

The findings which are published in the journal Neuron, provide further evidence that these illnesses are inherited, and may in the future help doctors pinpoint which patients will respond to different types of treatments.

Experts from the University of Edinburgh, working with researchers from Mount Sinai Hospital in Toronto, Canada and RIKEN in Japan, studied two types of damage to a gene (DISC1). Previous research at the University, working with families with a high incidence of mental illness, identified this gene as being linked to schizophrenia, manic depression (bipolar affective disorder) and major depression. The gene was also found to be essential for brain signalling and plays a key role in learning, memory and mood.

... more about:
»DISC1 »Depression »Mental »disorder »schizophrenia »types

To further their findings, experts looked at the behaviour of mice with two types of damage in the gene. The results suggest that one responded better to antipsychotics, used to treat schizophrenia while the other responded better to anti-depressants, used to treat mood disorders.

Prof David Porteous, Chair of Human Molecular Genetics and Medicine at the University of Edinburgh, said: “While the causes of schizophrenia, bipolar affective disorder and major depression are unknown, all the evidence points to subtle differences in the way the brain develops and to chemical changes in the brain. Our previous work identified the DISC1 gene as an important risk factor in these types of mental illness.

“By analysing the behaviour of mice, we were able to provide further evidence of the importance of DISC1. We also found remarkable clear cut differences between the different types of damage to the gene and the treatment that was the most effective. By analysing how the brain changes and develops over time we would hope that this would lead to more effective drugs to treat such illnesses.”

About one in 50 people worldwide will develop the symptoms of schizophrenia or bipolar affective disorder, with the first signs often appearing in late adolescence or early adulthood. Most cases arise in families with some sort of history of mental illness implying a strong influence of genes. Several different genes have been reported to pre-dispose to schizophrenia but DISC1 is one of the few which has been replicated by several laboratories.

Tara Womersley | EurekAlert!
Further information:
http://www.ed.ac.uk

Further reports about: DISC1 Depression Mental disorder schizophrenia types

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>