Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assumption of function not always correct

03.05.2007
A protein called RecQ takes on a totally opposite function in the bacteria Escherichia coli to the one it fulfills in yeast and in humans, indicating that people seeking to understand the role of different forms in human cells and disease need to consider both possibilities, said researchers from Baylor College of Medicine in a report in the current issue of Molecular Cell.

Humans have five forms of this particular protein, and three are associated with syndromes that predispose people to cancer, said Dr. Susan Rosenberg, professor of molecular and human genetics at Baylor College of Medicine. Two of the forms are not associated with cancer syndromes.

Other organisms have forms of this protein in varying numbers, said Rosenberg. For example, E. coli has only one. All forms appear to be very similar, no matter what the organism. When proteins are found in a variety of organisms, they are called conserved.

"It was thought that because these were so well conserved, they should do more or less the same thing," said Rosenberg. However, research in her laboratory showed this was not the case.

... more about:
»Chromosome »Syndrome »intermediates »organism

In yeast and one of the human forms of a protein called RecQ actually works to help unzip DNA strands when chromosomes repair DNA damage using a process called genetic recombination. In this kind of repair, one chromosome aggregates with a partner chromosome—usually its twin chromosome following DNA replication—and then disaggregates following repair. If the repair aggregates are not unzipped, the chromosomes can't separate for reproduction. The yeast and human Werner syndrome enzymes helps prevent the buildup of unwanted intermediates of aggregated chromosomes that can actually kill the cells if not unzipped.

When that protein is lacking, the intermediates buildup and the cells die. However, while many people think all such proteins work similarly in repair, recent work by Rosenberg and others in her laboratory demonstrates that the protein works in exactly the opposite manner in E. coli.

In yeast, she said, the protein's job is to get the two chromosomes apart. One form of the protein does this also in humans, and when this protein is mutated or missing, a premature aging and cancer-predisposition disease called Werner syndrome results. Cancer results from destabilizing the chromosomes.

"When people knock out Werner (protein), they see these intermediates piling up and the cells die from failure to resolve this," she said.

Daniel B. Magner and Matthew D. Blankschien, both graduate students in Rosenberg's laboratory, found that E.coli/RecQ promotes the accumulation of these intermediates, actually promoting the cell's death by this method.

When scientists begin considering the possible of effects of other relatives of RecQ in humans and other organisms, they should be aware of this finding and consider both possibilities when seeking to link mutations in the protein to disease, said Rosenberg.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.molecule.org/content/article/abstract?uid=PIIS1097276507001578&highlight=magner

Further reports about: Chromosome Syndrome intermediates organism

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>