Assumption of function not always correct

Humans have five forms of this particular protein, and three are associated with syndromes that predispose people to cancer, said Dr. Susan Rosenberg, professor of molecular and human genetics at Baylor College of Medicine. Two of the forms are not associated with cancer syndromes.

Other organisms have forms of this protein in varying numbers, said Rosenberg. For example, E. coli has only one. All forms appear to be very similar, no matter what the organism. When proteins are found in a variety of organisms, they are called conserved.

“It was thought that because these were so well conserved, they should do more or less the same thing,” said Rosenberg. However, research in her laboratory showed this was not the case.

In yeast and one of the human forms of a protein called RecQ actually works to help unzip DNA strands when chromosomes repair DNA damage using a process called genetic recombination. In this kind of repair, one chromosome aggregates with a partner chromosome—usually its twin chromosome following DNA replication—and then disaggregates following repair. If the repair aggregates are not unzipped, the chromosomes can't separate for reproduction. The yeast and human Werner syndrome enzymes helps prevent the buildup of unwanted intermediates of aggregated chromosomes that can actually kill the cells if not unzipped.

When that protein is lacking, the intermediates buildup and the cells die. However, while many people think all such proteins work similarly in repair, recent work by Rosenberg and others in her laboratory demonstrates that the protein works in exactly the opposite manner in E. coli.

In yeast, she said, the protein's job is to get the two chromosomes apart. One form of the protein does this also in humans, and when this protein is mutated or missing, a premature aging and cancer-predisposition disease called Werner syndrome results. Cancer results from destabilizing the chromosomes.

“When people knock out Werner (protein), they see these intermediates piling up and the cells die from failure to resolve this,” she said.

Daniel B. Magner and Matthew D. Blankschien, both graduate students in Rosenberg's laboratory, found that E.coli/RecQ promotes the accumulation of these intermediates, actually promoting the cell's death by this method.

When scientists begin considering the possible of effects of other relatives of RecQ in humans and other organisms, they should be aware of this finding and consider both possibilities when seeking to link mutations in the protein to disease, said Rosenberg.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors