Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson pharmacologist says biomarker discovery bodes well for better cancer diagnostics

03.05.2007
While new findings from Ohio State University scientists suggest a genetic marker that could help distinguish between chronic pancreatitis and pancreatic cancer and gauge who will do well with cancer treatment, a pharmacologist at the Kimmel Cancer Center at Jefferson in Philadelphia sees the discovery as much more.

The researchers have identified "a new level of biological regulation" and potentially an improved way to profile tumors, says Scott Waldman, M.D., Ph.D., professor and chair of pharmacology and experimental therapeutics at Jefferson Medical College of Thomas Jefferson University in Philadelphia, who co-wrote an editorial about the study appearing May 2, 2007 in the journal JAMA, the Journal of the American Medical Association.

"The findings are significant because they seem to represent a large part of the machinery in the cell that regulates the processing of information from chromosome and gene to the protein machinery that makes the cell run," says Dr. Waldman. "No one knew about this intermediate level of regulation in every cell in the body. It’s part of the cell’s normal machinery that regulates in part how cells become specialized."

The Ohio State team found that preliminary evidence suggesting that the expression pattern of microRNA (miRNAs) – small pieces of noncoding genetic material – may be useful in distinguishing between chronic pancreatitis and pancreatic cancer and may be able to tell which pancreatic cancer patients will live longer than others. In humans, aberrant expression of miRNAs contributes to cancer by either turning on cancer-causing genes or by inhibiting tumor-blocking genes.

... more about:
»Biomarker »Waldman »miRNAs »pancreatic

As a result, Dr. Waldman notes, the findings also indicate that these miRNAs can serve as diagnostic markers. "Because they are involved in processes underlying cancer, these specific miRNAs mediate the disease process in different types of cells, such as pancreas or lung, for example," he says. "There apparently is a profile of miRNAs that identify pancreatic cancer cells from other types. It appears that in some cases, there are common miRNAs, and for others there are miRNAs that can distinguish different types of cancer. A tumor can be profiled based on miRNAs."

MiRNAs cans serve as prognostic markers as well. "They apparently distinguish normal pancreas tissue from inflamed tissue from cancer, and this paper shows miRNAs correlate with who will do well and who won’t," Dr. Waldman explains. "Presumably, it follows that miRNAs could be predictive markers, which could have implications for therapy.

"On top of this, there is a new layer of biology that is identifying novel mechanisms involved in the causation and progression of cancer, and which identifies new potential molecular targets that we can direct therapeutics against."

Yet, he cautions, "There is a great distance between biomarker discovery and application in the doctor’s office." Validating such biomarkers require "well designed, prospective, multicenter clinical trials that need to show not only what the biomarkers are supposed to show, but also that they affect patient outcome."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Biomarker Waldman miRNAs pancreatic

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>