Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sound of proteins

03.05.2007
Biologists have converted protein sequences into classical music in an attempt to help vision-impaired scientists and boost the popularity of genomic biology.

New research published today in the open access journal Genome Biology describes how researchers have found a way to present human proteins as musical notes.

Rie Takahashi and Jeffrey H. Miller from the University of California, Los Angeles, USA, have so far transcribed segments of two human proteins into music. But to make their melodies more pleasing on the ear, they had first to overcome a few problems – how to incorporate rhythm, and how to cram the 20 standard amino acids (the building blocks of proteins) into just 13 notes.

The duo focus on codons – sets of three adjacent bases that code for particular amino acids. They decided to include four different note durations with codons that appear more frequently transcribed into longer notes than those which appear less often. Individual amino acids are expressed as chords, in which similar amino acids are paired. For example, the amino acids tyrosine and phenylalanine are both assigned a G major chord, but they can be distinguished because the notes in the chord are arranged differently. This means the resulting music has a 20 note range spanning over 2 octaves, but with just 13 base notes.

... more about:
»MUSIC »amino »amino acid »sequence

The team find their music more melodic and less ‘jumpy’ than previous attempts, which have focussed on DNA sequences and protein folding, and hence closer to the musical depth of popular compositions. They are currently piloting a computer program, written by a collaborator Frank Pettit, which uses their translation rules to convert amino acids into music and hope it will speed up the translation of large segments of genomes. Further examples of converted proteins and the computer program are accessible for online use [www.mimg.ucla.edu/faculty/miller_jh/gene2music/home.html]. The browser allows anyone to send in a sequence coding for a protein that is then converted into music and returned to the inquirer as a midi file.

Press Officer | alfa
Further information:
http://genomebiology.com/
http://www.biomedcentral.com

Further reports about: MUSIC amino amino acid sequence

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>