Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The sound of proteins

Biologists have converted protein sequences into classical music in an attempt to help vision-impaired scientists and boost the popularity of genomic biology.

New research published today in the open access journal Genome Biology describes how researchers have found a way to present human proteins as musical notes.

Rie Takahashi and Jeffrey H. Miller from the University of California, Los Angeles, USA, have so far transcribed segments of two human proteins into music. But to make their melodies more pleasing on the ear, they had first to overcome a few problems – how to incorporate rhythm, and how to cram the 20 standard amino acids (the building blocks of proteins) into just 13 notes.

The duo focus on codons – sets of three adjacent bases that code for particular amino acids. They decided to include four different note durations with codons that appear more frequently transcribed into longer notes than those which appear less often. Individual amino acids are expressed as chords, in which similar amino acids are paired. For example, the amino acids tyrosine and phenylalanine are both assigned a G major chord, but they can be distinguished because the notes in the chord are arranged differently. This means the resulting music has a 20 note range spanning over 2 octaves, but with just 13 base notes.

... more about:
»MUSIC »amino »amino acid »sequence

The team find their music more melodic and less ‘jumpy’ than previous attempts, which have focussed on DNA sequences and protein folding, and hence closer to the musical depth of popular compositions. They are currently piloting a computer program, written by a collaborator Frank Pettit, which uses their translation rules to convert amino acids into music and hope it will speed up the translation of large segments of genomes. Further examples of converted proteins and the computer program are accessible for online use []. The browser allows anyone to send in a sequence coding for a protein that is then converted into music and returned to the inquirer as a midi file.

Press Officer | alfa
Further information:

Further reports about: MUSIC amino amino acid sequence

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>