Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea extract protects against brain damage in new mouse model of HIV-related dementia

02.05.2007
A compound derived from green tea greatly diminished the neurotoxicity of proteins secreted by the human immunodeficiency virus, suggesting a new approach to the prevention and treatment of HIV-associated dementia, also known as AIDS dementia complex. The disorder is the most severe form of HIV-related neuropsychiatric impairment.

University of South Florida neuroscientist Brian Giunta, MD, reported the findings May 1 at Experimental Biology 2007 in Washington, DC. His presentation was part of the scientific program of the American Society for Pharmacology and Experimental Therapeutics. The study was conducted using a new mouse model for HIV-related dementia developed by Dr. Giunta and Jun Tan, MD, PhD, director of the Neuroimmunology Laboratory at the Silver Child Development Center, USF Department of Psychiatry,

"These findings suggest that EGCG, the green tea-derived compound, may represent a new and natural compound for the prevention and treatment of this devastating disease," Dr. Giunta said.

"This is a very important finding in the prevention and treatment of HIV-related dementia, which is usually observed in the late stages of HIV disease," said Abdul S. Rao, MD, MA, DPhil, senior associate vice president for USF Health and vice dean for research and graduate affairs at the College of Medicine. "The neuroprotective effects of EGCG, the green-tea extract, may offer an alternative to existing mono or combination antiretroviral therapies that are known to have poor central nervous system penetration."

... more about:
»Cytokine »EGCG »Giunta »HIV »HIV proteins »HIV-related »dementia

HIV-associated dementia, a debilitating cognitive, emotional, and physical disorder, affects 22 percent of HIV-infected adults and more than half of HIV-infected children. Symptoms often begin with slight changes in behavior, intellectual ability, memory, and muscle coordination. Some patients experience depression-like symptoms such as loss of appetite and motivation. Tasks requiring complex thinking and high concentration become difficult, and motor skills gradually deteriorate over time.

The highly active antiretroviral therapies used in developed nations appear to slow the development of brain damage in patients with HIV-related dementia, making it a protracted disorder rather than an acute one. Unfortunately, these therapies neither cure nor prevent development of HIV-associated dementia and several epidemiologic studies indicate they increase the prevalence of the dementia. Currently, no treatments specifically target this neuropsychiatric disorder.

HIV-associated dementia is believed to be caused by the direct effects of HIV upon the brain. The virus secretes proteins known as Tat and gp120, which have direct toxic effects on the neurons. The proteins also have indirect effects caused by the release of chemical messengers known as cytokines, which interact with the HIV proteins to cause death of the brain cells. High levels of these cytokines alone also are toxic to the brain.

When healthy mice were given doses of the HIV proteins Gp120 and/or Tat, in combination with a cytokine known as interferon-gamma, they developed brain damage closely resembling that seen in HIV-associated dementia in humans. Dr. Giunta said the finding may help explain the cognitive and behavioral changes in individuals infected with HIV.

Dr. Giunta then used epigallocatechin-3-gallate (EGCG), the major antioxidant derived from green tea, to break into this pathway of neurotoxicity. He was successful both in cell studies and in studies involving the new mouse model of the disease.

Cultured neurons from mice were exposed to EGCG before being given a cocktail of the two neurotoxic HIV proteins and the toxic cytokine. The green tea compound inhibited the ability of the cytokine to act with the HIV proteins to cause death and damage of the neurons. In further confirmation, the green tea compound also inhibited the neurotoxic properties of these HIV proteins in the presence of the cytokine in live mice.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.usf.edu

Further reports about: Cytokine EGCG Giunta HIV HIV proteins HIV-related dementia

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>