Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sensor to have applications in homeland defense, safeguarding warfighters, clinical diagnostics

Sensor will be capable of simultaneously detecting thousands of proteins, DNA, whole cells and pathogens

A Sandia National Laboratories research team is developing a new type of electrochemical sensor that uses a unique surface chemistry to reliably and accurately detects thousands of differing biomolecules on a single platform.

The new bioagent detection system could be applicable in homeland defense, safeguarding warfighters, and clinical diagnostics.

“A problem with the majority of existing biosensors is that they only look for one type of biomolecule [DNA or protein] at a time,” says Jason Harper, research team member. “This can often lead to inaccurate or inconclusive results and limits the use of the sensor. Where our sensor differs is that multiple characteristics of several bioagent targets can be tested on a single chip.”

For example, instead of using only an antibody that binds to the surface of an anthrax spore, the new Sandia sensor could test for several DNA sequences and internal and external proteins unique to anthrax. This provides numerous positive readings for the target agent or agents, significantly increasing confidence in the sensor results.

“Identification of several DNA sequences and protein markers will allow for detection of multiple targets and accurate discrimination between similar bioagent threats.” Harper says.

The new Sandia sensor will be able to simultaneously detect thousands of biomolecules on a single platform. By integrating antibodies, DNA, and other biomolecules on a single device, the number of lab instruments, volume of reagents required, time for analysis, and the cost of performing effectively thousands of tests are all reduced.

Sandia is a National Nuclear Security Administration (NNSA) laboratory.

The platform, a microfabricated chip, is just one inch by one inch in size. Several technological advances in microfabrication processes have increased the numbers of electrodes that can be produced on a sensor platform. A major challenge is how to pattern different biomolecules onto closely spaced micrometer-sized electrodes. The research team believes the answer lies in the electrodeposition of aryl diazonium salts.

The surface chemistry, produced by team members David Wheeler and Shawn Dirk, possesses several advantages over currently-used chemistry, Wheeler says.

“This diazonium-based surface chemistry can be selectively deposited onto several types of substrates by controlling the charge of the substrate in the diazonium solution,” Wheeler says. “Because the deposition of the diazonium molecules is based on the application of an electrical potential, the selective patterning of individually addressable electrodes is possible. Upon deposition, covalent bonds are formed with the substrate, producing a highly stable film.”

The chemistry is also compatible with a wide variety of biomolecules. DNA, antibodies, enzymes, and peptides all have been patterned onto arrays at Sandia using this chemistry.

After treating the sensor with the target solution, the array is washed and treated with a different solution containing molecules that bind to the other end of the target biomolecule, forming a “sandwich.” These secondary labels form an electroactive product that is detected by the electrode.

Says team member Ronen Polsky, “We are also investigating a new electrochemical detection method, using electrocatalytic nanoparticles, that we hope will eliminate the extra washing and labeling steps. This will greatly simplify the end device.”

Some of this work was recently featured in an article in Langmuir, published by the American Chemical Society. Diazonium chemistry was used to selectively deposit the enzyme horseradish peroxidase, which was then used to electrochemically detect hydrogen peroxide.

Electrochemical detection holds many advantages over other common optical-based biosenors. By eliminating optics and using semiconductor microarrays the end device is smaller, more rugged, and simpler in design.

Eventually the sensor array will be integrated in a deployable electrochemical sensor that will have an electronic readout identifying the biomolecules detected, or wirelessly transmit the results to a computer or network. Reaching that point will take anywhere from two to five years, says Ronen.

Currently the sensor arrays in the project allow for selective identification of nine biomolecules, Harper says. However, the work has kindled the interest of commercial sensor companies. The Sandia team recently traveled to Seattle to test their surface chemistry on a commercial array produced by CombiMatrix, a company that specializes in producing semiconductor arrays with more than 12,000 individually addressable electrodes in an area less than one inch square.

“The team successfully patterned peptide ligands onto 2,151 individual electrodes out of an array of 12,544 electrodes,” says Susan Brozik, project principal investigator. “The resulting electrochemical signal from protein biodetection on the patterned electrodes formed the Sandia Thunderbird symbol as well as the CombiMatrix logo.”

Because of this initial success, Sandia and CombiMatrix are pursuing a cooperative research and development agreement (CRADA) for further development of a sensor using Sandia’s surface chemistry and CombiMatrix’s electrode array, to ultimately test for thousands of biomolecules simultaneously. Funding for this research has been provided by Sandia’s internal Laboratory Directed Research and Development (LDRD) program, the National Consortium for Measurement and Signatures Intelligence (MASINT) Research, a Defense Intelligence Agency program that seeks to promote collaborated research among academia, industry, laboratories, and DOE. CombiMatrix is funded by the Defense Threat Reduction Agency.

Chris Burroughs | EurekAlert!
Further information:

Further reports about: CombiMatrix DNA DNA sequence Electrochemical Sandia thousands

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>