Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why losing money may be more painful than you think

02.05.2007
Losing money may be intrinsically linked with fear and pain in the brain, scientists have discovered. In a Wellcome Trust study published today in the Journal of Neuroscience, researchers have shown that during a gambling task, losing money activated an area of the brain involved in responding to fear and pain.

"Many everyday financial decisions, such as playing the lottery or investing money are gambles in some form or another, and most of these gambles involve the chances of both gaining and losing money," says Dr Ben Seymour from the Wellcome Trust Centre for Neuroimaging at UCL (University College London), who led the study. "Although we already know an impressive amount about how the brain learns to predict financial gains, until now, we have known little about how we deal with losing money."

The researchers studied twenty four healthy subjects as they played a gambling game to win money and recorded the activity in the brain throughout the game using an fMRI brain scanner to look for subtle changes in brain activity. They found that the subjects were accurately learning to predict when there was a chance of winning or losing money, and that this learning appeared to occur in a region located deep within the brain, called the striatum.

Being able to make predictions about rewards and punishments is important, since it allows us to take appropriate action early to avoid punishments or to benefit from rewards. This ability is guided by a "prediction error", whereby the brain learns to make predictions based on previous mistakes .The researchers have shown that there appears to be a separate response when the prediction results in a financial loss, as opposed to financial gains,.

... more about:
»Financial »gamble »prediction »reward

The researchers found surprising similarities between the response to financial losses and a system that they had previously identified for responding to pain, which they believe allows the brain to predict imminent harm and allow immediate defensive action to be taken.

"Clearly, none of us want to lose money in the same way that none of us want to experience pain," says Dr Seymour. "It would make sense that the way that we learn to predict and hence avoid both of them should be linked."

The reward and defensive systems relating to financial loss were very similar to motivational systems previously identified in rats, which suggests they have hijacked an evolutionarily old system connected to avoiding fear and pain.

"This provides a sort of biological justification for the popular concept of ‘financial pain’," says Dr Seymour.

Understanding how the brain systems for learning to predict financial losses and gains interact may provide important insights into why some people gamble more than others, and why some become addicted to it, Dr Seymour added.

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: Financial gamble prediction reward

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>