Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why losing money may be more painful than you think

02.05.2007
Losing money may be intrinsically linked with fear and pain in the brain, scientists have discovered. In a Wellcome Trust study published today in the Journal of Neuroscience, researchers have shown that during a gambling task, losing money activated an area of the brain involved in responding to fear and pain.

"Many everyday financial decisions, such as playing the lottery or investing money are gambles in some form or another, and most of these gambles involve the chances of both gaining and losing money," says Dr Ben Seymour from the Wellcome Trust Centre for Neuroimaging at UCL (University College London), who led the study. "Although we already know an impressive amount about how the brain learns to predict financial gains, until now, we have known little about how we deal with losing money."

The researchers studied twenty four healthy subjects as they played a gambling game to win money and recorded the activity in the brain throughout the game using an fMRI brain scanner to look for subtle changes in brain activity. They found that the subjects were accurately learning to predict when there was a chance of winning or losing money, and that this learning appeared to occur in a region located deep within the brain, called the striatum.

Being able to make predictions about rewards and punishments is important, since it allows us to take appropriate action early to avoid punishments or to benefit from rewards. This ability is guided by a "prediction error", whereby the brain learns to make predictions based on previous mistakes .The researchers have shown that there appears to be a separate response when the prediction results in a financial loss, as opposed to financial gains,.

... more about:
»Financial »gamble »prediction »reward

The researchers found surprising similarities between the response to financial losses and a system that they had previously identified for responding to pain, which they believe allows the brain to predict imminent harm and allow immediate defensive action to be taken.

"Clearly, none of us want to lose money in the same way that none of us want to experience pain," says Dr Seymour. "It would make sense that the way that we learn to predict and hence avoid both of them should be linked."

The reward and defensive systems relating to financial loss were very similar to motivational systems previously identified in rats, which suggests they have hijacked an evolutionarily old system connected to avoiding fear and pain.

"This provides a sort of biological justification for the popular concept of ‘financial pain’," says Dr Seymour.

Understanding how the brain systems for learning to predict financial losses and gains interact may provide important insights into why some people gamble more than others, and why some become addicted to it, Dr Seymour added.

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: Financial gamble prediction reward

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>