Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein found that slows hepatitis C growth in liver cells

30.04.2007
Biomedical researchers have identified a cellular protein that interferes with hepatitis C virus replication, a finding that ultimately may help scientists develop new drugs to fight the virus.

The anti-hepatitis C activity of the protein, called “p21-activated kinase 1” (PAK1), was discovered by scientists at the University of Texas Medical Branch at Galveston (UTMB), who describe their findings in an article in the current issue of the Journal of Biological Chemistry. In addition to presenting the researchers’ discovery that PAK1 controls the rate at which hepatitis C virus replicates, the paper describes the biochemical pathways that lead to PAK1 activation and the specific mechanisms by which PAK1 interferes with the ability of hepatitis C to hijack liver cells and make more copies of itself.

“Our findings reveal a novel cellular control pathway that regulates the growth of hepatitis C virus within the cell,” said Dr. Stanley M. Lemon, director of the National Institutes of Health-funded Hepatitis C Research Center at UTMB and of the academic medical center’s Institute for Human Infections and Immunity. Lemon, senior author of the Journal of Biological Chemistry paper, added, “Understanding this better is likely to suggest new approaches to therapy for this difficult to treat disease."

Hepatitis C chronically infects approximately 170 million people worldwide. The most effective treatment for the virus, interferon-based therapy, eradicates the virus less than 50 percent of the time and causes debilitating side effects. Those for whom that treatment fails are at high risk for fatal cirrhosis or liver cancer. In the United States, about half of all liver cancer cases occur in people infected by hepatitis C virus.

... more about:
»Hepatitis »PAK1 »finding »liver

The UTMB scientists reported their findings in the April 20 issue of the Journal of Biological Chemistry. Their article is entitled “P21-activated Kinase 1 Is Activated through the Mammalian Target of Rapamycin/p70 56 Kinase Pathway and Regulates the Replication of Hepatitis C Virus in Human Hepatoma Cells.”

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

Further reports about: Hepatitis PAK1 finding liver

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>