Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide search unearths surprising clues for diabetes and triglycerides

30.04.2007
Scientists definitively link novel regions of human genome to type 2 diabetes and triglyceride levels; work made possible by recent advances in genomic information and methods

Scientists from the Broad Institute of Harvard and MIT, Lund University and Novartis today announced the discovery of three unsuspected regions of human DNA that contain clear genetic risk factors for type 2 diabetes, and another that is associated with elevated blood triglycerides. The findings stem from the work of the Diabetes Genetics Initiative (DGI), a public-private partnership established in 2004 between Novartis, the Broad Institute of Harvard and MIT, and Lund University, and also reflect a close partnership with two other diabetes research groups. The three groups’ studies, appearing together in the April 26 advance online edition of Science, are among the first to apply a suite of genomic resources to clinical research, including the Human Genome Project, the SNP and HapMap Projects, and genome-scale laboratory and analytical tools.

"For the first time, it is possible to look across the human genome and discover new clues about the root causes of common, devastating diseases that arise from a combination of genes, environment and behavior," said senior author David Altshuler, a principal investigator of the Diabetes Genetics Initiative, director of the Broad Institute’s Program in Medical and Population Genetics and an associate professor of genetics at Massachusetts General Hospital and Harvard Medical School. "The confirmed genetic contributors we and our collaborators have found open surprising new avenues for disease research, treatment and prevention."

With the aging of the population and the frequent excesses of modern lifestyles, type 2 diabetes and cardiac risk factors constitute a looming threat to human health, particularly in industrialized nations. Solutions to this burgeoning problem must include new, more effective treatments and the ability to identify "at risk" individuals — each of which requires innovative directions for future research.

The DGI study is one of the first large-scale studies of human genetic variability, aiming to reveal genetic connections to type 2 diabetes and other cardiovascular risk factors such as blood insulin levels, cholesterol levels, blood pressure and body weight. Each of these traits is considered "complex" because it involves a mix of inherited, environmental and behavioral factors.

The scientists’ approach, known as a "genome-wide association study", involves scanning thousands of individuals’ genomes for single letter changes, called single nucleotide polymorphisms (SNPs). Due to the block-like nature of the human genome, certain SNPs can serve as signposts, highlighting pieces of nearby DNA that may play a causal role in disease.

Using this approach, the DGI team and their collaborators identified and confirmed three novel regions of the genome that influence the risk of type 2 diabetes, as well as a genomic region that is linked with blood triglyceride levels. Perhaps the most intriguing result involves a DNA region that lies far from any known annotated genes. Such genomic "outsiders" would have been incredibly difficult to find by traditional hypothesis-driven approaches.

The other regions linked to diabetes lie near genes with known biochemical functions, but ones never before connected to the disease. Interestingly, the region implicated in triglyceride levels involves a gene that has long been known to play a role in modulating blood glucose.

"This collaboration brings together biologists, geneticists, statisticians and physicians. This interdisciplinary team approach may be the best way to understand complex disorders and quickly turn that to therapeutic advantage," said Thomas Hughes, Head of Diabetes and Metabolism Research at the Novartis Institutes for BioMedical Research.

Based on initial results, the DGI scientists turned to replicating the most promising findings in independent samples — a critical aspect of the genomic method. The scientists worked together with two other groups that performed similar genomic analyses of type 2 diabetes: the Wellcome Trust Case Control Consortium/U.K. Type 2 Diabetes Genetics Consortium (WTCCC/UKT2D), led by Mark McCarthy and Peter Donnelly of Oxford University and Andrew Hattersley of Peninsula Medical School; and the Finland-United States Investigation of NIDDM Genetics (FUSION) led by Francis Collins of the National Human Genome Research Institute and Michael Boehnke of the University of Michigan.

Notably, the three groups shared their findings in advance of publication to establish priorities for independent follow-up studies. By virtue of their close collaboration, DGI, WTCCC/UKT2D and FUSION researchers identified at least eight clear genetic risk factors for type 2 diabetes, including three that had never before been found, as well as several other probable risk factors that warrant further study.

"This work benefited from unprecedented collaboration among scientists in the diabetes research community, providing the most extensive view yet of the genetic roots of type 2 diabetes. Our own work would not have been possible without the participation of patients in Finland and Sweden, and we are very grateful for their involvement," said senior author Leif Groop, a principal investigator in the Diabetes Genetics Initiative and a professor in the department of clinical sciences, diabetes and endocrinology at Lund University in Malmo, Sweden. "These findings point at unexpected and new mechanisms contributing to the development of type 2 diabetes, perhaps through the protective mechanisms which allow our insulin-producing cells to cope with the modern lifestyle and environment."

Genome-wide association studies are the realization of a long-term effort to understand how human genetic variation impacts health. Built on the Human Genome Project, the studies have been made possible in the last year, driven by the recent completion of the HapMap Project and availability of large-scale research tools. Already, scientists from Broad Institute of Harvard and MIT as well as other research organizations worldwide, have used the approach to identify genetic differences that influence a variety of disorders, including Crohn’s disease, obesity, age-related macular degeneration, and prostate cancer.

Nicole Davis | EurekAlert!
Further information:
http://www.broad.mit.edu/diabetes/

Further reports about: Broad Institute DGI Diabetes Genetics SNP Triglyceride approach genomic type 2 diabetes

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>