Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide search unearths surprising clues for diabetes and triglycerides

30.04.2007
Scientists definitively link novel regions of human genome to type 2 diabetes and triglyceride levels; work made possible by recent advances in genomic information and methods

Scientists from the Broad Institute of Harvard and MIT, Lund University and Novartis today announced the discovery of three unsuspected regions of human DNA that contain clear genetic risk factors for type 2 diabetes, and another that is associated with elevated blood triglycerides. The findings stem from the work of the Diabetes Genetics Initiative (DGI), a public-private partnership established in 2004 between Novartis, the Broad Institute of Harvard and MIT, and Lund University, and also reflect a close partnership with two other diabetes research groups. The three groups’ studies, appearing together in the April 26 advance online edition of Science, are among the first to apply a suite of genomic resources to clinical research, including the Human Genome Project, the SNP and HapMap Projects, and genome-scale laboratory and analytical tools.

"For the first time, it is possible to look across the human genome and discover new clues about the root causes of common, devastating diseases that arise from a combination of genes, environment and behavior," said senior author David Altshuler, a principal investigator of the Diabetes Genetics Initiative, director of the Broad Institute’s Program in Medical and Population Genetics and an associate professor of genetics at Massachusetts General Hospital and Harvard Medical School. "The confirmed genetic contributors we and our collaborators have found open surprising new avenues for disease research, treatment and prevention."

With the aging of the population and the frequent excesses of modern lifestyles, type 2 diabetes and cardiac risk factors constitute a looming threat to human health, particularly in industrialized nations. Solutions to this burgeoning problem must include new, more effective treatments and the ability to identify "at risk" individuals — each of which requires innovative directions for future research.

The DGI study is one of the first large-scale studies of human genetic variability, aiming to reveal genetic connections to type 2 diabetes and other cardiovascular risk factors such as blood insulin levels, cholesterol levels, blood pressure and body weight. Each of these traits is considered "complex" because it involves a mix of inherited, environmental and behavioral factors.

The scientists’ approach, known as a "genome-wide association study", involves scanning thousands of individuals’ genomes for single letter changes, called single nucleotide polymorphisms (SNPs). Due to the block-like nature of the human genome, certain SNPs can serve as signposts, highlighting pieces of nearby DNA that may play a causal role in disease.

Using this approach, the DGI team and their collaborators identified and confirmed three novel regions of the genome that influence the risk of type 2 diabetes, as well as a genomic region that is linked with blood triglyceride levels. Perhaps the most intriguing result involves a DNA region that lies far from any known annotated genes. Such genomic "outsiders" would have been incredibly difficult to find by traditional hypothesis-driven approaches.

The other regions linked to diabetes lie near genes with known biochemical functions, but ones never before connected to the disease. Interestingly, the region implicated in triglyceride levels involves a gene that has long been known to play a role in modulating blood glucose.

"This collaboration brings together biologists, geneticists, statisticians and physicians. This interdisciplinary team approach may be the best way to understand complex disorders and quickly turn that to therapeutic advantage," said Thomas Hughes, Head of Diabetes and Metabolism Research at the Novartis Institutes for BioMedical Research.

Based on initial results, the DGI scientists turned to replicating the most promising findings in independent samples — a critical aspect of the genomic method. The scientists worked together with two other groups that performed similar genomic analyses of type 2 diabetes: the Wellcome Trust Case Control Consortium/U.K. Type 2 Diabetes Genetics Consortium (WTCCC/UKT2D), led by Mark McCarthy and Peter Donnelly of Oxford University and Andrew Hattersley of Peninsula Medical School; and the Finland-United States Investigation of NIDDM Genetics (FUSION) led by Francis Collins of the National Human Genome Research Institute and Michael Boehnke of the University of Michigan.

Notably, the three groups shared their findings in advance of publication to establish priorities for independent follow-up studies. By virtue of their close collaboration, DGI, WTCCC/UKT2D and FUSION researchers identified at least eight clear genetic risk factors for type 2 diabetes, including three that had never before been found, as well as several other probable risk factors that warrant further study.

"This work benefited from unprecedented collaboration among scientists in the diabetes research community, providing the most extensive view yet of the genetic roots of type 2 diabetes. Our own work would not have been possible without the participation of patients in Finland and Sweden, and we are very grateful for their involvement," said senior author Leif Groop, a principal investigator in the Diabetes Genetics Initiative and a professor in the department of clinical sciences, diabetes and endocrinology at Lund University in Malmo, Sweden. "These findings point at unexpected and new mechanisms contributing to the development of type 2 diabetes, perhaps through the protective mechanisms which allow our insulin-producing cells to cope with the modern lifestyle and environment."

Genome-wide association studies are the realization of a long-term effort to understand how human genetic variation impacts health. Built on the Human Genome Project, the studies have been made possible in the last year, driven by the recent completion of the HapMap Project and availability of large-scale research tools. Already, scientists from Broad Institute of Harvard and MIT as well as other research organizations worldwide, have used the approach to identify genetic differences that influence a variety of disorders, including Crohn’s disease, obesity, age-related macular degeneration, and prostate cancer.

Nicole Davis | EurekAlert!
Further information:
http://www.broad.mit.edu/diabetes/

Further reports about: Broad Institute DGI Diabetes Genetics SNP Triglyceride approach genomic type 2 diabetes

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>