Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Minuscule molecules pack a powerful punch in immune defence

The Babraham Institute and Wellcome Trust Sanger Institute Cambridge, UK

Scientists have shown that a tiny microRNA molecule called miR-155, plays a critical role in immune defence and may be a lynchpin in the immune system. The findings reported today in Science reveal that mice lacking the bic/miR-155 gene, one of the world’s first microRNA ‘knockout’ mice, have compromised immune systems and are less able to resist infection and mount an immune response to bacteria like Salmonella typhimurium, a leading cause of human gastroenteritis. They also develop symptoms similar to those of human autoimmune disorders.

The researchers from the Wellcome Trust Sanger Institute, The Babraham Institute, The Gurdon Institute and University of Cambridge, suggest that the corresponding human gene will have a similar role. This discovery provides insights into what makes our immune systems tick, what underpins diseases of the immune system like lymphoma development or autoimmunity, and how these minuscule molecules may be harnessed as effective therapeutic agents.

MicroRNAs, also known as short interfering (si) RNAs, are copied from DNA but do not contain code for protein. Rather they control gene activity by binding to specific related sequences, thereby interfering with a gene’s ability to produce the proteins that co-ordinate cellular activities.

... more about:
»Genome »MicroRNA »T-cell »immune response »miR-155

Previous research showed that miR-155 was active in cells of the immune system and over-activity of miR-155 has been reported in B-cell lymphomas and solid tumours, implicating this region of the genome in cancer. The research team, led by the Wellcome Trust Sanger Institute, targeted the Bic/microRNA-155 gene in embryonic stem cells, which they used to transfer the mutation into mice.

“Very little is known about the function of the hundreds of microRNA genes,” said Dr Antony Rodriguez, lead author on the paper from the Wellcome Trust Sanger Institute. “Although plentiful, this class of gene had never before been knocked out in mice, the best model for human disease. But we simply did not know whether microRNA knockouts would have an effect in mice: previous knockout studies in nematode worms suggested that most microRNAs were not essential. Our findings were dramatically different.”

The effects of the miR-155 knockout swept across the immune system; although knockout of miR-155 did not appear to affect normal growth and development of cells in the immune system, three critical components that normally orchestrate the immune response, T-cells, B-cells and dendritic cells, performed less well. The ability of T-cells to produce chemical signals called cytokines, regulators of the immune response, was disrupted. Antibody production by B cells was dramatically reduced and dendritic cells, which normally ‘present’ foreign proteins to the immune system to activate a response in T-cells, were unable to do so.

“These findings demonstrate the importance of this level of control in the immune system and will lead immunologists to rethink how the immune system works,” said Dr Martin Turner, Head of the Laboratory of Lymphocyte Signalling and Development at the Babraham Institute.

To uncover how miR-155 might cause such widespread disruption, the team used microarray analysis to spot the genes whose activity was altered in the immune cells of the knockouts. The activity of over 150 genes with a large range of biological functions was reduced by miR-155, of particular note the gene c-Maf, which normally increases cytokine production and is critical for T-cell function. The team showed that miR-155 interacted directly with c-Maf, reducing its activity with consequences for activation of other genes, production of an effective immune response and susceptibility to autoimmunity and infection.

The knockout mice also develop changes to lung tissue, with scarring that is similar to some human systemic autoimmune disorders. The human Bic/miRNA-155 gene, which is 96% identical with the mature mouse microRNA, is located in a region of chromosome 21 associated with asthma, pollen sensitivity and atopic dermatitis. Hence it is thought that the equivalent human microRNA may be linked with the onset of some immune diseases.

“This dramatic finding reflects a large amount of work by collaborating groups,” said Professor Allan Bradley, Director of the Wellcome Trust Sanger Institute. “Showing that knocking out a microRNA has such dramatic effects opens new doors to understanding this novel class of gene regulation, with consequences for human health and disease. Our work builds upon the sequences of the human and mouse genomes, the power of computer analysis and microarray work and exemplifies why whole-organism research can bring understanding that cannot be developed in any other way.”

The study emphasises the value of the ES cell based knockout technology, currently being pursued on a large scale through the KOMP and EUCOMM programmes at the Wellcome Trust Sanger Institute. This success illustrates the power of the mouse to reveal function and indicates a wider role for microRNAs in animals with large genomes.

Claire Cockcroft | alfa
Further information:

Further reports about: Genome MicroRNA T-cell immune response miR-155

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>