Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minuscule molecules pack a powerful punch in immune defence

30.04.2007
The Babraham Institute and Wellcome Trust Sanger Institute Cambridge, UK

Scientists have shown that a tiny microRNA molecule called miR-155, plays a critical role in immune defence and may be a lynchpin in the immune system. The findings reported today in Science reveal that mice lacking the bic/miR-155 gene, one of the world’s first microRNA ‘knockout’ mice, have compromised immune systems and are less able to resist infection and mount an immune response to bacteria like Salmonella typhimurium, a leading cause of human gastroenteritis. They also develop symptoms similar to those of human autoimmune disorders.

The researchers from the Wellcome Trust Sanger Institute, The Babraham Institute, The Gurdon Institute and University of Cambridge, suggest that the corresponding human gene will have a similar role. This discovery provides insights into what makes our immune systems tick, what underpins diseases of the immune system like lymphoma development or autoimmunity, and how these minuscule molecules may be harnessed as effective therapeutic agents.

MicroRNAs, also known as short interfering (si) RNAs, are copied from DNA but do not contain code for protein. Rather they control gene activity by binding to specific related sequences, thereby interfering with a gene’s ability to produce the proteins that co-ordinate cellular activities.

... more about:
»Genome »MicroRNA »T-cell »immune response »miR-155

Previous research showed that miR-155 was active in cells of the immune system and over-activity of miR-155 has been reported in B-cell lymphomas and solid tumours, implicating this region of the genome in cancer. The research team, led by the Wellcome Trust Sanger Institute, targeted the Bic/microRNA-155 gene in embryonic stem cells, which they used to transfer the mutation into mice.

“Very little is known about the function of the hundreds of microRNA genes,” said Dr Antony Rodriguez, lead author on the paper from the Wellcome Trust Sanger Institute. “Although plentiful, this class of gene had never before been knocked out in mice, the best model for human disease. But we simply did not know whether microRNA knockouts would have an effect in mice: previous knockout studies in nematode worms suggested that most microRNAs were not essential. Our findings were dramatically different.”

The effects of the miR-155 knockout swept across the immune system; although knockout of miR-155 did not appear to affect normal growth and development of cells in the immune system, three critical components that normally orchestrate the immune response, T-cells, B-cells and dendritic cells, performed less well. The ability of T-cells to produce chemical signals called cytokines, regulators of the immune response, was disrupted. Antibody production by B cells was dramatically reduced and dendritic cells, which normally ‘present’ foreign proteins to the immune system to activate a response in T-cells, were unable to do so.

“These findings demonstrate the importance of this level of control in the immune system and will lead immunologists to rethink how the immune system works,” said Dr Martin Turner, Head of the Laboratory of Lymphocyte Signalling and Development at the Babraham Institute.

To uncover how miR-155 might cause such widespread disruption, the team used microarray analysis to spot the genes whose activity was altered in the immune cells of the knockouts. The activity of over 150 genes with a large range of biological functions was reduced by miR-155, of particular note the gene c-Maf, which normally increases cytokine production and is critical for T-cell function. The team showed that miR-155 interacted directly with c-Maf, reducing its activity with consequences for activation of other genes, production of an effective immune response and susceptibility to autoimmunity and infection.

The knockout mice also develop changes to lung tissue, with scarring that is similar to some human systemic autoimmune disorders. The human Bic/miRNA-155 gene, which is 96% identical with the mature mouse microRNA, is located in a region of chromosome 21 associated with asthma, pollen sensitivity and atopic dermatitis. Hence it is thought that the equivalent human microRNA may be linked with the onset of some immune diseases.

“This dramatic finding reflects a large amount of work by collaborating groups,” said Professor Allan Bradley, Director of the Wellcome Trust Sanger Institute. “Showing that knocking out a microRNA has such dramatic effects opens new doors to understanding this novel class of gene regulation, with consequences for human health and disease. Our work builds upon the sequences of the human and mouse genomes, the power of computer analysis and microarray work and exemplifies why whole-organism research can bring understanding that cannot be developed in any other way.”

The study emphasises the value of the ES cell based knockout technology, currently being pursued on a large scale through the KOMP and EUCOMM programmes at the Wellcome Trust Sanger Institute. This success illustrates the power of the mouse to reveal function and indicates a wider role for microRNAs in animals with large genomes.

Claire Cockcroft | alfa
Further information:
http://www.babraham.ac.uk/

Further reports about: Genome MicroRNA T-cell immune response miR-155

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>