Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Morphine Makes Lasting – and Surprising – Change in the Brain

27.04.2007
Morphine stops the synapse-strengthening process in the brain known as long-term potentiation at inhibitory synapses, according to new research conducted by Brown University brain scientist Julie Kauer. In Nature, Kauer explains this startlingly persistent effect, which could contribute to addiction and may provide a target for treatments of opioid addiction. The research also supports a provocative theory of addiction as a disease of learning and memory.

Morphine, as little as a single dose, blocks the brain’s ability to strengthen connections at inhibitory synapses, according to new Brown University research published in Nature.

The findings, uncovered in the laboratory of Brown scientist Julie Kauer, may help explain the origins of addiction in the brain. The research also supports a provocative new theory of addiction as a disease of learning and memory.

“We’ve added a new piece to the puzzle of how addictive drugs affect the brain,” Kauer said. “We’ve shown here that morphine makes lasting changes in the brain by blocking a mechanism that’s believed to be the key to memory making. So these findings reinforce the notion that addiction is a form of pathological learning.”

... more about:
»LTP »dopamine »morphine »neurons

Kauer, a professor in the Department of Molecular Pharmacology, Physiology and Biotechnology at Brown, is interested in how the brain stores information. Long-term potentiation, or LTP, is critical to this process.

In LTP, connections between neurons – called synapses, the major site of information exchange in the brain – become stronger after repeated stimulation. This increased synaptic strength is believed to be the cellular basis for memory.

In her experiments, Kauer found that LTP is blocked in the brains of rats given as little as a single dose of morphine. The drug’s impact was powerful: LTP continued to be blocked 24 hours later – long after the drug was out of the animal’s system.

“The persistence of the effect was stunning,” Kauer said. “This is your brain on drugs.”

Kauer recorded the phenomenon in the ventral tegmental area, or VTA, a small section of the midbrain that is involved in the reward system that reinforces survival-boosting behaviors such as eating and sex – a reward system linked to addiction. The affected synapses, Kauer found, were those between inhibitory neurons and dopamine neurons. In a healthy brain, inhibitory cells would limit the release of dopamine, the “pleasure chemical” that gets released by naturally rewarding experiences. Drugs of abuse, from alcohol to cocaine, also increase dopamine release.

So the net effect of morphine and other opioids, Kauer found, is that they boost the brain’s reward response. “It’s as if a brake were removed and dopamine cells start firing,” she explained. “That activity, combined with other brain changes caused by the drugs, could increase vulnerability to addiction. The brain may, in fact, be learning to crave drugs.”

Kauer and her team not only recorded cellular changes caused by morphine but also molecular ones. In fact, the researchers pinpointed the very molecule that morphine disables – guanylate cyclase. This enzyme, or inhibitory neurons themselves, would be effective targets for drugs that prevent or treat addiction.

Fereshteh Nugent, a Brown postdoctoral research associate, and Esther Penick, a former Brown postdoctoral research associate who now serves as assistant professor of biology at Knox College, rounded out the research team.

The National Institute of Drug Abuse funded the work.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: LTP dopamine morphine neurons

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>