Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sea snails break the law

Scientists at the Smithsonian discover the re- evolution of a useful skill set

Lizards gave rise to legless snakes. Cave fishes don’t have eyeballs. In evolution, complicated structures often get lost. Dollo’s Law states that complicated structures can't be re-evolved because the genes that code for them were lost or have mutated. A group of sea snails breaks Dollo’s law, Rachel Collin, Staff Scientist at the Smithsonian Tropical Research Institute and colleagues from two Chilean universities announce in the April, 2007, Biological Bulletin.

"This is important because it shows that animals may carry the potential for evolutionary change around with them. When the environment changes, new life forms may be able to regain abilities that were lost earlier in evolutionary history," Collin explains.

Most species of sea snail go through several life stages on the way to becoming reproductive adults. The early stages, or larvae, usually live in the water column eating microscopic algae and swimming with a specialized structure called the velum. This stage has been lost in many species, where development happens in immobile capsules protected by the mother. In these species, small bottom-dwelling juvenile snails (miniature adults) hatch out of eggs and crawl away. Thus, a whole life stage, the motile larva, is lost and thought to never been re-gained.

... more about:
»Evolution »break »larva »snail

But how can you tell what happened in the past to bring this about? Collaborators from Chile, Argentina and the Smithsonian in Panama, using embryological observations and DNA sequencing, show that the larval stage can be reacquired.

The group collected 6 species of the genus Crepipatella from the shorelines of Argentina, Chile, Panama, Peru, South Africa and the United States. They observed the developmental stages of each species and sequenced a gene called mitochondrial cytochrome oxidase I. Then, based on the differences in gene sequences, they used several different techniques to reconstruct family trees.

Indeed, they found that motile, feeding larvae had been lost and re-gained in the same family group, which breaks Dollo’s law. Collin sums this up: "The embryos of limpets in a group called Crepipatella seem to retain some of the apparatus they would need for larval feeding and swimming, even though they do not produce larvae. Then, from DNA data we see that one species with larvae has re-evolved in the middle of a group that doesn't have them. It does go both ways! There’s more flexibility in animal evolution than people thought."

Beth King | EurekAlert!
Further information:

Further reports about: Evolution break larva snail

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>