Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A relative of anti-aging gene Klotho also influences metabolic activity, obesity

25.04.2007
A relative of the anti-aging gene Klotho helps activate a hormone that can lower blood glucose levels in fat cells of mice, making it a novel target for developing drugs to treat human obesity and diabetes, UT Southwestern Medical Center researchers have found.

In a study available online and in the Proceedings of the National Academy of Sciences, the researchers show that a type of Klotho protein binds to receptors for a metabolic hormone in fat cells, forming a “co-receptor” that enables the hormone to stimulate the processing of glucose, the body’s main source of fuel. The Klotho gene has previously been found to play a role in prolonging the life of mice partly by controlling insulin.

Mice lacking this particular Klotho protein can’t stimulate this key metabolic activity, said Dr. Makoto Kuro-o, associate professor of pathology at UT Southwestern and the study’s senior author.

“The ability to stimulate the glucose processing is key to proper metabolism, so this Klotho protein, known as beta-Klotho, is a novel target for developing drugs that can enhance or block the metabolic activity of this hormone, which has been shown to be able to lower blood glucose in mice,” he said. “Klotho’s role in regulating the metabolic activity of the growth hormones is essential.”

Dr. Kuro-o and his colleagues originally discovered the Klotho gene in 1997, naming it after one of the mythical Greek characters who controlled the length of human life.

The Klotho protein, which is found in several species, acts as a hormone in mice, circulating through the blood and binding to cells. Previous studies have shown that mutant mice lacking the Klotho gene appear normal until about a month of age, and then begin showing signs of age, such as skin atrophy, osteoporosis, arteriosclerosis and emphysema. The mice die prematurely at about two months.

Therapies based on Klotho could prove to be a way to extend life or slow the effects of aging, so Dr. Kuro-o and his colleagues are trying to uncover more about how Klothoworks.

In this study, the researchers examined a connection between the presence of Klotho proteins and fibroblast growth factors in the fat cells of mice. Fibroblast growth factors are hormones found in many tissues that are involved in tasks such as wound care and skeletal development.

Certain fibroblast growth factors are active only in fat cells, but it hadn’t been known why.

The UT Southwestern researchers discovered that beta-Klotho, which is active in fat cells, actually binds to receptors for metabolic fibroblast growth factors. This forms a co-receptor that activates the hormone’s metabolic function, Dr. Kuro-o said.

For example, fibroblast growth factor 21, or FGF21, is a hormone in the blood that has been shown to lower blood glucose levels in diabetic and obese mice. In fat cells it binds to the fibroblast growth factor and beta-Klotho co-receptor complex and signals glucose processing; however, without beta-Klotho, FGF21 lacks the ability on its own to bind to its receptors and can’t stimulate the metabolic function.

“Klotho’s actions determine the metabolic activity of these fibroblast growth factors, making them targets for drugs that either block or enhance the metabolic activity,” Dr. Kuro-o said. “Klotho proteins thus will be important players in future therapies for human conditions such as diabetes, obesity and kidney disease.”

Other UT Southwestern pathology researchers involved in the study were Drs. Yasushi Ogawa, postdoctoral researcher; Hiroshi Kurosu, instructor; Animesh Nandi, senior research scientist; Kevin P. Rosenblatt, assistant professor; and Masaya Yamamoto, a former instructor who has since returned to Japan. Researchers from the New York University School of Medicine also were involved.

The Eisai Research Fund, Ellison Medical Foundation, Ted Nash Long Life Foundation, Irma T. Hirschl Fund and the National Institutes of Health supported the study.

Cliff Despres | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Fibroblast Glucose HDL-cholesterol Klotho Kuro-o beta-Klotho hormone metabolic obesity

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>