Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One step closer to a cure for African sleeping sickness

25.04.2007
Studies of the enzyme CTP synthetase in the parasite Trypanosoma brucei have brought researchers at Umeå University in Sweden closer to a cure for African sleeping sickness. Their findings are now being published in the April issue of The Journal of Biological Chemistry.

Since the parasite constantly changes its surface, it can avoid the immune defense of humans and invade the central nervous system, which leads to personality disturbances, sleep disruptions, and ultimately death. For patients affected by a severe T brucei infection in the central nervous system, there are no medicines that can treat both subspecies without incurring extremely serious side effects.

In a project directed by Professor Lars Thelander, scientists have previously discovered that the parasites' CTP synthetase, an enzyme responsible for the production of CTP­-one of the four building blocks for mRNA synthesis, a process that is critical for the survival of the parasite­-should be a key target for treating the disease.

In the current publication scientists have managed to show that the proper content of acivicin, a well-known cell toxin that has previously been used as a cancer drug, can inhibit the parasite's CTP synthetase, thereby permanently killing the trypanosomes in cell cultures. With daily doses of acivicin, trypanosome-infected mice have also been kept free of symptoms, as opposed to untreated mice that died within a few days.

"The advantage of acivicin is that it has already been used on humans. All the clinical studies have been performed, and we know that the drug can penetrate the central nervous system, which is not the case with many other medicines for trypanosomes. What's more, it can be taken in tablet form, which is extremely important in countries with limited health-care resources," says Artur Fijolek, co-author of the article.

The research team at the Umeå University Department of Medical Chemistry and Biophysics hopes soon to be able to find the appropriate dosage of acivicin that can permanently cure the infected mice.

"Expression, Purification, Characterization and in Vivo Targeting of Trypanosome CTP Synthetase for Treatment of African Sleeping Sickness," Artur Fijolek, Anders Hofer, and Lars Thelander. The Journal of Biological Chemistry, Vol. 282, No. 16. pp. 11858-11865, April 20, 2007.

For more information, please contact Artur Fijolek at e-mail artur.fijolek@medchem.umu.se or phone: +46 (0)90-786 52 63 or Lars Thelander at e-mail lars.thelander@medchem.umu.se or phone: +46 (0)90-786 67 42.

Bertil Born | idw
Further information:
http://www.vr.se

Further reports about: CTP Fijolek Thelander central nervous system nervous system synthetase

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>