Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Junk' DNA now looks like powerful regulator

24.04.2007
Large swaths of garbled human DNA once dismissed as junk appear to contain some valuable sections, according to a new study by researchers at the Stanford University School of Medicine and the University of California-Santa Cruz. The scientists propose that this redeemed DNA plays a role in controlling when genes turn on and off.

Gill Bejerano, PhD, assistant professor of developmental biology and of computer science at Stanford, found more than 10,000 nearly identical genetic snippets dotting the human chromosomes. Many of those snippets were located in gene-free chromosomal expanses once described by geneticists as "gene deserts." These sections are, in fact, so clogged with useful DNA bits - including the ones Bejerano and his colleagues describe - that they've been renamed "regulatory jungles."

"It's funny how quickly the field is now evolving," Bejerano said. His work picking out these snippets and describing why they might exist will be published in the April 23 advance online issue of the Proceedings of the National Academy of Sciences.

It turns out that most of the segments described in the research paper cluster near genes that play a carefully orchestrated role during an animal's first few weeks after conception. Bejerano and his colleagues think that these sequences help in the intricate choreography of when and where those genes flip on as the animal lays out its body plan. In particular, the group found the sequences to be especially abundant near genes that help cells stick together. These genes play a crucial role early in an animal's life, helping cells migrate to the correct location or form into organs and tissues of the correct shape.

... more about:
»Bejerano »DNA »Transposon

The 10,402 sequences studied by Bejerano, along with David Haussler, PhD, professor of biomolecular engineering at UC-Santa Cruz, are remnants of unusual DNA pieces called transposons that duplicate themselves and hop around the genome. "We used to think they were mostly messing things up. Here is a case where they are actually useful," Bejerano said.

He suspects that when a transposon is plopped down in a region where it wasn't needed, it slowly accumulated mutations until it no longer resembled its original sequence. The genome is littered with these decaying transposons. When a transposon dropped into a location where it was useful, however, it held on to much of the original sequence, making it possible for Bejerano to pick out.

In past work, Bejerano and his co-workers had identified a handful of transposons that seemed to regulate nearby genes. However, it wasn't clear how common the phenomenon might be. "Now we've shown that transposons may be a major vehicle for evolutionary novelty," he said.

The paper's first author, Craig Lowe, a graduate student in Haussler's lab at UC-Santa Cruz, said finding the transposons was just the first step. "Now we are trying to nail down exactly what the elements are doing," he said.

Bejerano's work wouldn't have been possible without two things that became available over the past few years: the complete gene sequence of many vertebrate species, and fast computers running sophisticated new genetic analysis software. "Right now it's like being a kid in a candy warehouse," Bejerano said. Computer-savvy biologists have the tools to ask questions about how genes and chromosomes evolve and change, questions that just a few years ago were unanswerable.

Bejerano and his colleagues aren't the first to suggest that transposons play a role in regulating nearby genes. In fact, Nobel laureate Barbara McClintock, PhD, who first discovered transposons, proposed in 1956 that they could help determine the timing for when nearby genes turn on and off.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Bejerano DNA Transposon

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>