Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a Taste for Poison Drive Speciation?

24.04.2007
The endless struggle for survival in nature inevitably boils down to finding food and eluding predators. To avoid the latter, many plants produce chemical weapons to discourage predators.

A sound strategy overall, but the rules of co-evolutionary war suggest that an herbivore will evolve resistance to the toxic defenses of plants. The fruit fly Drosophila sechellia, for example, has a penchant for the fruit of a Polynesian shrub called Tahitian Noni (Morinda citrifolia) that smells so foul it's nicknamed 'vomit fruit.' Other Drosophila species treat the rank odor, which arises from the toxins hexanoic acid and octanoic acid, as a warning sign to stay away.

And with good reason-if they alight on Tahitian Noni's fruit, they die. But D. sechellia blithely homes in on the malodorous fruit to lay its eggs, ensuring a bounteous meal for its larval offspring. D. sechellia's resistance to a plant that kills likely competitors gives the fly nearly exclusive access to its host-a distinct ecological advantage. But it also raises an important question for evolutionary biologists: are the factors that promote specialized ecological interactions between herbivore and plant host sufficient to drive herbivore speciation?

In a new study, published by PLoS Bioogy, Takashi Matsuo, Yoshiaki Fuyama, and colleagues explored the genetic factors underlying the behavioral differences between D. sechellia and other Drosophila species. Taking advantage of the robust genetic tools offered by D. melanogaster, the researchers traced the flies' divergent host-plant preferences to two olfactory genes, odorant-binding protein 57e (Obp57e) and Obp57d. Their findings suggest that as the expression patterns of these genes changed in D. sechellia, the fly lost the impulse to avoid Tahitian Noni, allowing an adaptive shift to this previously proscribed plant.

... more about:
»Obp57d »Obp57e »herbivore »octanoic »sechellia

The researchers generated lines of "knock-out" flies that lacked either Obp57e genes, adjacent Obp57d genes, or both (called double knock-outs). Flies lacking just one of the genes avoided hexanoic acid-laden traps, whereas females missing both genes flocked to them. But the most interesting results came when the researchers compared the knock-out strains' choice of hexanoic acid or octanoic acid as an egg-laying medium. When the D. melanogaster double knock-out received either the D. sechellia or D. simulans' versions of Obp57e and Obp57d, it adopted the behavior of the donor fly. Thus, replacing Obp57d and Obp57e genes changed the fly's response to the host toxins. The researchers conclude that an alteration in the expression pattern of the two genes produces this behavioral shift.

In future experiments, the researchers plan to minimize the interaction of these two genes to understand their separate functions. Until then, it appears that D. sechellia's choice of forbidden fruit as a reproductive site involved genetic changes that promoted resistance to octanoic acid and transformed an urge to avoid the toxin into a fondness for its fetor. The researchers suspect that the fly lost its urge to avoid the fruit first; a plausible scenario if an ancestral population of flies landed on fruit in advanced stages of decay, when octanoic acid toxins have mostly degraded. Behavioral adaptations between herbivores and their hosts tend to involve changes in genes linked to taste and odor perception. With over 50 Obp genes in the D. melanogaster genome, researchers have a rich resource for studying the ecological contributions to speciation.

Citation: Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in

Drosophila sechellia. PLoS Biol 5(5): e118. doi:10.1371/journal.pbio.0050118

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pbio.0050118
http://www.plos.org

Further reports about: Obp57d Obp57e herbivore octanoic sechellia

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>