Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a Taste for Poison Drive Speciation?

24.04.2007
The endless struggle for survival in nature inevitably boils down to finding food and eluding predators. To avoid the latter, many plants produce chemical weapons to discourage predators.

A sound strategy overall, but the rules of co-evolutionary war suggest that an herbivore will evolve resistance to the toxic defenses of plants. The fruit fly Drosophila sechellia, for example, has a penchant for the fruit of a Polynesian shrub called Tahitian Noni (Morinda citrifolia) that smells so foul it's nicknamed 'vomit fruit.' Other Drosophila species treat the rank odor, which arises from the toxins hexanoic acid and octanoic acid, as a warning sign to stay away.

And with good reason-if they alight on Tahitian Noni's fruit, they die. But D. sechellia blithely homes in on the malodorous fruit to lay its eggs, ensuring a bounteous meal for its larval offspring. D. sechellia's resistance to a plant that kills likely competitors gives the fly nearly exclusive access to its host-a distinct ecological advantage. But it also raises an important question for evolutionary biologists: are the factors that promote specialized ecological interactions between herbivore and plant host sufficient to drive herbivore speciation?

In a new study, published by PLoS Bioogy, Takashi Matsuo, Yoshiaki Fuyama, and colleagues explored the genetic factors underlying the behavioral differences between D. sechellia and other Drosophila species. Taking advantage of the robust genetic tools offered by D. melanogaster, the researchers traced the flies' divergent host-plant preferences to two olfactory genes, odorant-binding protein 57e (Obp57e) and Obp57d. Their findings suggest that as the expression patterns of these genes changed in D. sechellia, the fly lost the impulse to avoid Tahitian Noni, allowing an adaptive shift to this previously proscribed plant.

... more about:
»Obp57d »Obp57e »herbivore »octanoic »sechellia

The researchers generated lines of "knock-out" flies that lacked either Obp57e genes, adjacent Obp57d genes, or both (called double knock-outs). Flies lacking just one of the genes avoided hexanoic acid-laden traps, whereas females missing both genes flocked to them. But the most interesting results came when the researchers compared the knock-out strains' choice of hexanoic acid or octanoic acid as an egg-laying medium. When the D. melanogaster double knock-out received either the D. sechellia or D. simulans' versions of Obp57e and Obp57d, it adopted the behavior of the donor fly. Thus, replacing Obp57d and Obp57e genes changed the fly's response to the host toxins. The researchers conclude that an alteration in the expression pattern of the two genes produces this behavioral shift.

In future experiments, the researchers plan to minimize the interaction of these two genes to understand their separate functions. Until then, it appears that D. sechellia's choice of forbidden fruit as a reproductive site involved genetic changes that promoted resistance to octanoic acid and transformed an urge to avoid the toxin into a fondness for its fetor. The researchers suspect that the fly lost its urge to avoid the fruit first; a plausible scenario if an ancestral population of flies landed on fruit in advanced stages of decay, when octanoic acid toxins have mostly degraded. Behavioral adaptations between herbivores and their hosts tend to involve changes in genes linked to taste and odor perception. With over 50 Obp genes in the D. melanogaster genome, researchers have a rich resource for studying the ecological contributions to speciation.

Citation: Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in

Drosophila sechellia. PLoS Biol 5(5): e118. doi:10.1371/journal.pbio.0050118

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pbio.0050118
http://www.plos.org

Further reports about: Obp57d Obp57e herbivore octanoic sechellia

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>