Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a Taste for Poison Drive Speciation?

24.04.2007
The endless struggle for survival in nature inevitably boils down to finding food and eluding predators. To avoid the latter, many plants produce chemical weapons to discourage predators.

A sound strategy overall, but the rules of co-evolutionary war suggest that an herbivore will evolve resistance to the toxic defenses of plants. The fruit fly Drosophila sechellia, for example, has a penchant for the fruit of a Polynesian shrub called Tahitian Noni (Morinda citrifolia) that smells so foul it's nicknamed 'vomit fruit.' Other Drosophila species treat the rank odor, which arises from the toxins hexanoic acid and octanoic acid, as a warning sign to stay away.

And with good reason-if they alight on Tahitian Noni's fruit, they die. But D. sechellia blithely homes in on the malodorous fruit to lay its eggs, ensuring a bounteous meal for its larval offspring. D. sechellia's resistance to a plant that kills likely competitors gives the fly nearly exclusive access to its host-a distinct ecological advantage. But it also raises an important question for evolutionary biologists: are the factors that promote specialized ecological interactions between herbivore and plant host sufficient to drive herbivore speciation?

In a new study, published by PLoS Bioogy, Takashi Matsuo, Yoshiaki Fuyama, and colleagues explored the genetic factors underlying the behavioral differences between D. sechellia and other Drosophila species. Taking advantage of the robust genetic tools offered by D. melanogaster, the researchers traced the flies' divergent host-plant preferences to two olfactory genes, odorant-binding protein 57e (Obp57e) and Obp57d. Their findings suggest that as the expression patterns of these genes changed in D. sechellia, the fly lost the impulse to avoid Tahitian Noni, allowing an adaptive shift to this previously proscribed plant.

... more about:
»Obp57d »Obp57e »herbivore »octanoic »sechellia

The researchers generated lines of "knock-out" flies that lacked either Obp57e genes, adjacent Obp57d genes, or both (called double knock-outs). Flies lacking just one of the genes avoided hexanoic acid-laden traps, whereas females missing both genes flocked to them. But the most interesting results came when the researchers compared the knock-out strains' choice of hexanoic acid or octanoic acid as an egg-laying medium. When the D. melanogaster double knock-out received either the D. sechellia or D. simulans' versions of Obp57e and Obp57d, it adopted the behavior of the donor fly. Thus, replacing Obp57d and Obp57e genes changed the fly's response to the host toxins. The researchers conclude that an alteration in the expression pattern of the two genes produces this behavioral shift.

In future experiments, the researchers plan to minimize the interaction of these two genes to understand their separate functions. Until then, it appears that D. sechellia's choice of forbidden fruit as a reproductive site involved genetic changes that promoted resistance to octanoic acid and transformed an urge to avoid the toxin into a fondness for its fetor. The researchers suspect that the fly lost its urge to avoid the fruit first; a plausible scenario if an ancestral population of flies landed on fruit in advanced stages of decay, when octanoic acid toxins have mostly degraded. Behavioral adaptations between herbivores and their hosts tend to involve changes in genes linked to taste and odor perception. With over 50 Obp genes in the D. melanogaster genome, researchers have a rich resource for studying the ecological contributions to speciation.

Citation: Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in

Drosophila sechellia. PLoS Biol 5(5): e118. doi:10.1371/journal.pbio.0050118

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pbio.0050118
http://www.plos.org

Further reports about: Obp57d Obp57e herbivore octanoic sechellia

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>