Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of planarians offers insight into germ cell development

24.04.2007
The planarian is not as well known as other, more widely used subjects of scientific study - model creatures such as the fruit fly, nematode or mouse. But University of Illinois cell and developmental biology professor Phillip Newmark thinks it should be.

As it turns out, the tiny, seemingly cross-eyed flatworm is an ideal subject for the study of germ cells, precursors of eggs and sperm in all sexually reproducing species.

The planarian Newmark studies, Schmidtea mediterranea, is a tiny creature with a lot of interesting traits. Cut it in two (lengthwise or crosswise) and each piece will regenerate a new planarian, complete with brains, guts and - in most cases - gonads. Even when the planarian's brain is severed from its body, it can regenerate all that is removed, including the reproductive organs.

In a new study published this month in the Proceedings of the National Academy of Sciences, Newmark and his colleagues at the U. of I. report that planarians share some important characteristics with mammals that may help scientists tease out the mechanisms by which germ cells are formed and maintained. Newmark's team made a few discoveries related to a gene, called nanos, which was previously known to play a critical role in germ cell development in several other model organisms.

... more about:
»Newmark »germ cells »inductive »nanos »planarian

Unlike fruit flies and nematodes, which show signs of germ cell initiation in the earliest stages of their embryonic development, planarians do not generally express nanos or produce germ cells until several days after hatching. This delayed initiation of germ cell growth is called inductive specification, and is common to mammals and a number of other animals.

Graduate student Yuying Wang and the other team members were able to show that nanos is essential for inductive specification in planarians. Blocking nanos expression by means of RNA interference immediately after the planarians hatched prevented the emergence and development of germ cells. Blocking nanos in mature adults caused their ovaries and testes to disappear. And when the researchers blocked nanos expression in planarians that had had their bodies and reproductive organs detached from their brains, the planarians regenerated new bodies, but with no reproductive cells.

"This is the first time that nanos gene function has been studied in a non-traditional model organism," Newmark said. "This is important because planarians, like mammals, seem to make their germ cells by an inductive mechanism. So we're hoping that we can use the molecular biological tools available for studying planarians to get at the mechanisms that tell a cell: 'You're going to be a germ cell.' "

S. mediterranea also has the ability to reproduce asexually: It clones itself by means of fission. In looking at nanos in asexual individuals of this species, the researchers made the surprising discovery that these asexual individuals also express nanos and produce germ cells. Some other mechanism, as yet unknown, prevents these germ cells from developing into functional testes and ovaries.

"Having a simple organism that also uses inductive signaling is going to help us tease apart the more conserved mechanisms (of germ cell development and maintenance)," Newmark said. "We hope that this information will also prove informative for understanding these processes in higher organisms."

Editor's note: To reach Phillip Newmark, call 217-244-4674; e-mail:
pnewmark@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0423germcells.html

Further reports about: Newmark germ cells inductive nanos planarian

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>