Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of planarians offers insight into germ cell development

24.04.2007
The planarian is not as well known as other, more widely used subjects of scientific study - model creatures such as the fruit fly, nematode or mouse. But University of Illinois cell and developmental biology professor Phillip Newmark thinks it should be.

As it turns out, the tiny, seemingly cross-eyed flatworm is an ideal subject for the study of germ cells, precursors of eggs and sperm in all sexually reproducing species.

The planarian Newmark studies, Schmidtea mediterranea, is a tiny creature with a lot of interesting traits. Cut it in two (lengthwise or crosswise) and each piece will regenerate a new planarian, complete with brains, guts and - in most cases - gonads. Even when the planarian's brain is severed from its body, it can regenerate all that is removed, including the reproductive organs.

In a new study published this month in the Proceedings of the National Academy of Sciences, Newmark and his colleagues at the U. of I. report that planarians share some important characteristics with mammals that may help scientists tease out the mechanisms by which germ cells are formed and maintained. Newmark's team made a few discoveries related to a gene, called nanos, which was previously known to play a critical role in germ cell development in several other model organisms.

... more about:
»Newmark »germ cells »inductive »nanos »planarian

Unlike fruit flies and nematodes, which show signs of germ cell initiation in the earliest stages of their embryonic development, planarians do not generally express nanos or produce germ cells until several days after hatching. This delayed initiation of germ cell growth is called inductive specification, and is common to mammals and a number of other animals.

Graduate student Yuying Wang and the other team members were able to show that nanos is essential for inductive specification in planarians. Blocking nanos expression by means of RNA interference immediately after the planarians hatched prevented the emergence and development of germ cells. Blocking nanos in mature adults caused their ovaries and testes to disappear. And when the researchers blocked nanos expression in planarians that had had their bodies and reproductive organs detached from their brains, the planarians regenerated new bodies, but with no reproductive cells.

"This is the first time that nanos gene function has been studied in a non-traditional model organism," Newmark said. "This is important because planarians, like mammals, seem to make their germ cells by an inductive mechanism. So we're hoping that we can use the molecular biological tools available for studying planarians to get at the mechanisms that tell a cell: 'You're going to be a germ cell.' "

S. mediterranea also has the ability to reproduce asexually: It clones itself by means of fission. In looking at nanos in asexual individuals of this species, the researchers made the surprising discovery that these asexual individuals also express nanos and produce germ cells. Some other mechanism, as yet unknown, prevents these germ cells from developing into functional testes and ovaries.

"Having a simple organism that also uses inductive signaling is going to help us tease apart the more conserved mechanisms (of germ cell development and maintenance)," Newmark said. "We hope that this information will also prove informative for understanding these processes in higher organisms."

Editor's note: To reach Phillip Newmark, call 217-244-4674; e-mail:
pnewmark@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0423germcells.html

Further reports about: Newmark germ cells inductive nanos planarian

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>