Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sirocco Project to launch 25th April, Norwich (UK)

23.04.2007
Scientists from seventeen world-class laboratories and companies from nine European countries are part of a new research consortium for studying how RNA silencing could be used to treat life-threatening diseases. SIROCCO stands for “Silencing RNAs: organisers and coordinators of complexity in eurkaryotic organisms”. The consortium, leaded by the Sainsbury Laboratory at the John Innes Centre, will be launched next 25th April, in Norwich.

The European Commission has committed 11.8 million euros to this four-year Integrated Project funded under the Sixth Framework Programme.

In Spain, the human research leaded by the scientist of the Centre for Genomic Regulation in Barcelona, Xavier Estivill, is currently studying the contribution of these small RNAs in the regulation of genes potentially involved in neuropsychiatric disorders within the framework of this project.

“RNA silencing, also called RNA interference, is the cell’s natural ability to turn off genes”, said Professor David Baulcombe of the Sainsbury Laboratory at the John Innes Centre. “Only a few years ago it was unknown, but now RNA silencing is one of the most powerful tools available to researchers. We can use it to understand the function of genes and the mechanisms of cellular regulation. We can also use it as a diagnostic tool for cancer and other diseases. In future it may also be possible to use RNA silencing as the basis of novel therapy for diverse diseases ranging from avian influenza to cancer.”

... more about:
»CONSORTIUM »RNA »silencing

RNA silencing is thought to have evolved as a defence mechanism against viruses. In primitive cells it was a type of immune system that could recognize and then silence viral genes. Later in evolution the silencing mechanism was recruited for switching off genes involved in normal growth of cells and responses to stress. It occurs in all sorts of organisms from yeasts to humans and the recent discoveries have revealed a previously unknown role for RNA (ribonucleic acid). They have shown how, in addition to the previously understood role as a cellular messenger that directs protein synthesis, RNA can also silence expression of genes. By introducing specific silencing RNAs into an organism, the expression of genes can be turned down in a controlled way.

“Although there has been rapid recent progress in understanding RNA silencing there is still much to be done” said Professor Baulcombe. “For example we need to ensure that an RNA targeted against gene X will only silence gene X and nothing else. When we can do that we will be able to use RNA as a drug without side effects. We also need to understand more about the role of silencing RNAs in normal growth and development. That information will then allow us to use the presence of silencing RNAs to diagnose disease states in a cell.”

Stimulated by the great potential of RNA silencing the European Commission has funded a consortium of the leading European laboratories. The consortium includes researchers working on RNA silencing in model plant and animal systems as well as humans. The use of the model systems allows experiments to be carried out that would be impossible with humans although the new discoveries may be translatable into new technologies for use in medicine.

Gloria Lligadas | alfa
Further information:
http://www.sirocco-project.eu

Further reports about: CONSORTIUM RNA silencing

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>