Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sirocco Project to launch 25th April, Norwich (UK)

23.04.2007
Scientists from seventeen world-class laboratories and companies from nine European countries are part of a new research consortium for studying how RNA silencing could be used to treat life-threatening diseases. SIROCCO stands for “Silencing RNAs: organisers and coordinators of complexity in eurkaryotic organisms”. The consortium, leaded by the Sainsbury Laboratory at the John Innes Centre, will be launched next 25th April, in Norwich.

The European Commission has committed 11.8 million euros to this four-year Integrated Project funded under the Sixth Framework Programme.

In Spain, the human research leaded by the scientist of the Centre for Genomic Regulation in Barcelona, Xavier Estivill, is currently studying the contribution of these small RNAs in the regulation of genes potentially involved in neuropsychiatric disorders within the framework of this project.

“RNA silencing, also called RNA interference, is the cell’s natural ability to turn off genes”, said Professor David Baulcombe of the Sainsbury Laboratory at the John Innes Centre. “Only a few years ago it was unknown, but now RNA silencing is one of the most powerful tools available to researchers. We can use it to understand the function of genes and the mechanisms of cellular regulation. We can also use it as a diagnostic tool for cancer and other diseases. In future it may also be possible to use RNA silencing as the basis of novel therapy for diverse diseases ranging from avian influenza to cancer.”

... more about:
»CONSORTIUM »RNA »silencing

RNA silencing is thought to have evolved as a defence mechanism against viruses. In primitive cells it was a type of immune system that could recognize and then silence viral genes. Later in evolution the silencing mechanism was recruited for switching off genes involved in normal growth of cells and responses to stress. It occurs in all sorts of organisms from yeasts to humans and the recent discoveries have revealed a previously unknown role for RNA (ribonucleic acid). They have shown how, in addition to the previously understood role as a cellular messenger that directs protein synthesis, RNA can also silence expression of genes. By introducing specific silencing RNAs into an organism, the expression of genes can be turned down in a controlled way.

“Although there has been rapid recent progress in understanding RNA silencing there is still much to be done” said Professor Baulcombe. “For example we need to ensure that an RNA targeted against gene X will only silence gene X and nothing else. When we can do that we will be able to use RNA as a drug without side effects. We also need to understand more about the role of silencing RNAs in normal growth and development. That information will then allow us to use the presence of silencing RNAs to diagnose disease states in a cell.”

Stimulated by the great potential of RNA silencing the European Commission has funded a consortium of the leading European laboratories. The consortium includes researchers working on RNA silencing in model plant and animal systems as well as humans. The use of the model systems allows experiments to be carried out that would be impossible with humans although the new discoveries may be translatable into new technologies for use in medicine.

Gloria Lligadas | alfa
Further information:
http://www.sirocco-project.eu

Further reports about: CONSORTIUM RNA silencing

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>