Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR chemists identify organic molecules that mimic metals

20.04.2007
Molecules may offer solution to storing hydrogen and producing abundant amino compounds for industrial applications

A limitation in using hydrogen as a fuel in hydrogen-powered vehicles is the difficulty involved in storing it in a cost-effective and convenient manner. While it is possible to store hydrogen using metals, the resulting products often can be prohibitively expensive and cause environmental problems.

Chemists at UC Riverside now offer a possible solution. A class of carbenes – molecules that have unusual, highly reactive carbon atoms – can mimic, to some extent, the behavior of metals, the chemists have found. Called cyclic alkyl amino carbenes or CAACs, these organic molecules, the researchers report, could be used to develop carbon-based systems for storing hydrogen.

Study results appear in the April 20 issue of Science.

... more about:
»CAACs »Hydrogen »ammonia »carbene »organic molecule

In their experiments, the researchers found that the CAACs can split hydrogen under extremely mild conditions, a behavior that has long been seen in metals reacting with hydrogen.

"The mode of action of these organic molecules, however, is totally different from that of metals," said Guy Bertrand, a distinguished professor of chemistry who led the research. "Moreover, the CAACs are able to split ammonia as well – an extremely difficult task for metals."

Bertrand explained that such a splitting of ammonia, under certain conditions, can pave the way for transforming abundant and inexpensive ammonia into useful amino compounds used to make pharmaceuticals and bulk industrial materials. "This is one of the top challenges for the 21st century," he said.

According to the UCR research team, the metal-mimicking carbenes offer another low-cost and low-toxicity benefit: Scientists now may be able to use non-metallic catalysts for a reaction, called "hydrogenation reaction," which plays a critical role in the food, petrochemical and pharmaceutical industries.

In their study, the researchers exposed a solution of CAACs to both gaseous hydrogen and liquid ammonia. "We used nuclear magnetic resonance spectroscopy to analyze the products," said Guido Frey, the first author of the research paper and a postdoctoral fellow, supported by the Alexander von Humboldt Foundation, in Bertrand’s lab. "And we used single crystal X-ray diffraction analysis to confirm the structure of the products."

A carbene is a molecule that has a carbon atom with six electrons instead of the usual eight. Because of the electron deficiency, carbenes are highly reactive and usually unstable in nature.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: CAACs Hydrogen ammonia carbene organic molecule

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>