Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Genes Activated During Learning and Memory

20.04.2007
Computational Approach Will Advance Drug Discovery, Understanding of Learning

Researchers have long recognized that for learning and memory to take place, certain genes must be activated to alter neuron activity inside the brain. Disruptions in normal gene expression within these neurons can lead to alarming consequences, such as seizures and epilepsy. But identifying and cataloging all the genes involved in learning is a daunting task. In the March 13 issue of BMC Neuroscience, Carnegie Mellon University scientists show how an innovative computational approach can provide a rapid way to identify the likely members of this long sought-after set of genes.

"The work could ultimately lead to the development of drugs to treat neurological disorders," said Alison Barth, assistant professor of biological sciences and a member of the Center for the Neural Basis of Cognition (CNBC). "We also expect this work to provide a valuable platform for any investigator to understand how neurons change at the molecular level during learning and the formation of memory."

As an animal learns and remembers, specific neurons inside its brain are activated. The molecular changes associated with learning alter a neuron's function — a process called plasticity. For many years, neuroscientists have known that two factors, CREB and zif268, activate genes involved in neuronal plasticity and learning. CREB and zif268 are transcription factors, binding to a cluster of chemical bases represented in the genetic code as letters. Once bound, they regulate genes that, in turn, dictate the assembly of other proteins that alter a neuron during memory and learning.

... more about:
»CREB »Neuron »plasticity »zif268

The Carnegie Mellon team created a step-by-step set of instructions for a computer to search the letters of code that make up the human genome to find just those genes activated by CREB and zif268. They specifically searched almost 20,000 genes to find those that CREB and zif268 bind to. This work, conducted by Carnegie Mellon undergraduate Andreas Pfenning and supervised by Assistant Professor of Biological Sciences Russell Schwartz, was also performed on our distant mammalian relative, the mouse.

The computer program found hundreds of instances of genes that bind with either CREB or zif268 — and sometimes both — in human and mouse genomes. A huge proportion of these genes had never been previously identified as CREB or zif268 targets.

"Finding a gene that appears to be activated in both the mouse and human strongly suggests that the gene is involved in memory and learning," said Schwartz. "Genes that behave similarly in distantly related animals are more likely to have an important function that has been retained over the course of evolution."

The Carnegie Mellon team has made its findings available and searchable via an open source/online journal. Previous studies on genes associated with neural plasticity have not focused on a complete set of genes, nor has the work been searchable, according to Barth. But now, their online database of the plasticity transcriptome includes the gene name, symbol and reference number — data that are not usually all collected and made freely available.

"By using standard nomenclature and multiple identifiers, we've made this a robust set of data for future research studies," Schwartz added.

The CNBC is dedicated to understanding the neural mechanisms that give rise to cognitive processes, including learning and memory, language and thought, perception and attention, and planning and action. The CNBC faculty includes researchers with primary and joint appointments in the departments of biological sciences, computer science, psychology, robotics and statistics at Carnegie Mellon; and bioengineering, mathematics, neurobiology, neurology, neuroscience, psychiatry and psychology at the University of Pittsburgh.

Lauren Ward | EurekAlert!
Further information:
http://www.cnbc.cmu.edu

Further reports about: CREB Neuron plasticity zif268

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>