Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Genes Activated During Learning and Memory

20.04.2007
Computational Approach Will Advance Drug Discovery, Understanding of Learning

Researchers have long recognized that for learning and memory to take place, certain genes must be activated to alter neuron activity inside the brain. Disruptions in normal gene expression within these neurons can lead to alarming consequences, such as seizures and epilepsy. But identifying and cataloging all the genes involved in learning is a daunting task. In the March 13 issue of BMC Neuroscience, Carnegie Mellon University scientists show how an innovative computational approach can provide a rapid way to identify the likely members of this long sought-after set of genes.

"The work could ultimately lead to the development of drugs to treat neurological disorders," said Alison Barth, assistant professor of biological sciences and a member of the Center for the Neural Basis of Cognition (CNBC). "We also expect this work to provide a valuable platform for any investigator to understand how neurons change at the molecular level during learning and the formation of memory."

As an animal learns and remembers, specific neurons inside its brain are activated. The molecular changes associated with learning alter a neuron's function — a process called plasticity. For many years, neuroscientists have known that two factors, CREB and zif268, activate genes involved in neuronal plasticity and learning. CREB and zif268 are transcription factors, binding to a cluster of chemical bases represented in the genetic code as letters. Once bound, they regulate genes that, in turn, dictate the assembly of other proteins that alter a neuron during memory and learning.

... more about:
»CREB »Neuron »plasticity »zif268

The Carnegie Mellon team created a step-by-step set of instructions for a computer to search the letters of code that make up the human genome to find just those genes activated by CREB and zif268. They specifically searched almost 20,000 genes to find those that CREB and zif268 bind to. This work, conducted by Carnegie Mellon undergraduate Andreas Pfenning and supervised by Assistant Professor of Biological Sciences Russell Schwartz, was also performed on our distant mammalian relative, the mouse.

The computer program found hundreds of instances of genes that bind with either CREB or zif268 — and sometimes both — in human and mouse genomes. A huge proportion of these genes had never been previously identified as CREB or zif268 targets.

"Finding a gene that appears to be activated in both the mouse and human strongly suggests that the gene is involved in memory and learning," said Schwartz. "Genes that behave similarly in distantly related animals are more likely to have an important function that has been retained over the course of evolution."

The Carnegie Mellon team has made its findings available and searchable via an open source/online journal. Previous studies on genes associated with neural plasticity have not focused on a complete set of genes, nor has the work been searchable, according to Barth. But now, their online database of the plasticity transcriptome includes the gene name, symbol and reference number — data that are not usually all collected and made freely available.

"By using standard nomenclature and multiple identifiers, we've made this a robust set of data for future research studies," Schwartz added.

The CNBC is dedicated to understanding the neural mechanisms that give rise to cognitive processes, including learning and memory, language and thought, perception and attention, and planning and action. The CNBC faculty includes researchers with primary and joint appointments in the departments of biological sciences, computer science, psychology, robotics and statistics at Carnegie Mellon; and bioengineering, mathematics, neurobiology, neurology, neuroscience, psychiatry and psychology at the University of Pittsburgh.

Lauren Ward | EurekAlert!
Further information:
http://www.cnbc.cmu.edu

Further reports about: CREB Neuron plasticity zif268

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>