Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Genes Activated During Learning and Memory

20.04.2007
Computational Approach Will Advance Drug Discovery, Understanding of Learning

Researchers have long recognized that for learning and memory to take place, certain genes must be activated to alter neuron activity inside the brain. Disruptions in normal gene expression within these neurons can lead to alarming consequences, such as seizures and epilepsy. But identifying and cataloging all the genes involved in learning is a daunting task. In the March 13 issue of BMC Neuroscience, Carnegie Mellon University scientists show how an innovative computational approach can provide a rapid way to identify the likely members of this long sought-after set of genes.

"The work could ultimately lead to the development of drugs to treat neurological disorders," said Alison Barth, assistant professor of biological sciences and a member of the Center for the Neural Basis of Cognition (CNBC). "We also expect this work to provide a valuable platform for any investigator to understand how neurons change at the molecular level during learning and the formation of memory."

As an animal learns and remembers, specific neurons inside its brain are activated. The molecular changes associated with learning alter a neuron's function — a process called plasticity. For many years, neuroscientists have known that two factors, CREB and zif268, activate genes involved in neuronal plasticity and learning. CREB and zif268 are transcription factors, binding to a cluster of chemical bases represented in the genetic code as letters. Once bound, they regulate genes that, in turn, dictate the assembly of other proteins that alter a neuron during memory and learning.

... more about:
»CREB »Neuron »plasticity »zif268

The Carnegie Mellon team created a step-by-step set of instructions for a computer to search the letters of code that make up the human genome to find just those genes activated by CREB and zif268. They specifically searched almost 20,000 genes to find those that CREB and zif268 bind to. This work, conducted by Carnegie Mellon undergraduate Andreas Pfenning and supervised by Assistant Professor of Biological Sciences Russell Schwartz, was also performed on our distant mammalian relative, the mouse.

The computer program found hundreds of instances of genes that bind with either CREB or zif268 — and sometimes both — in human and mouse genomes. A huge proportion of these genes had never been previously identified as CREB or zif268 targets.

"Finding a gene that appears to be activated in both the mouse and human strongly suggests that the gene is involved in memory and learning," said Schwartz. "Genes that behave similarly in distantly related animals are more likely to have an important function that has been retained over the course of evolution."

The Carnegie Mellon team has made its findings available and searchable via an open source/online journal. Previous studies on genes associated with neural plasticity have not focused on a complete set of genes, nor has the work been searchable, according to Barth. But now, their online database of the plasticity transcriptome includes the gene name, symbol and reference number — data that are not usually all collected and made freely available.

"By using standard nomenclature and multiple identifiers, we've made this a robust set of data for future research studies," Schwartz added.

The CNBC is dedicated to understanding the neural mechanisms that give rise to cognitive processes, including learning and memory, language and thought, perception and attention, and planning and action. The CNBC faculty includes researchers with primary and joint appointments in the departments of biological sciences, computer science, psychology, robotics and statistics at Carnegie Mellon; and bioengineering, mathematics, neurobiology, neurology, neuroscience, psychiatry and psychology at the University of Pittsburgh.

Lauren Ward | EurekAlert!
Further information:
http://www.cnbc.cmu.edu

Further reports about: CREB Neuron plasticity zif268

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>