Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretching DNA to the Limit

20.04.2007
DNA damage in a new light

It has long been known that UV light can damage DNA, reducing its ability to replicate and interact with proteins, and often resulting in the development of skin cancers. However, not much is known about how the elasticity of DNA strands is altered upon exposure to UV light. Now a group of researchers at Duke University have developed a method to measure changes in the mechanical properties of DNA upon irradiation with UV light.

Piotr Marszalek and his colleagues have conducted single-molecule force spectroscopy measurements on viral DNA, which show the unraveling of the DNA double helix upon exposure to UV irradiation. The researchers essentially pick up individual DNA molecules with the tip of a scanning probe microscope and stretch it while measuring the forces generated. These “stretch—release” measurements enable the accurate determination of changes in the elasticity of the DNA strands. Upon exposure to UV light, the force profile of the viral DNA changes dramatically in a dose-dependent manner. The force curve of intact DNA is characterized by a plateau region. This characteristic plateau is drastically reduced in width with increasing exposure to UV light.

UV light induces the crosslinking of the constituent DNA bases within the polynucleotide chains, as well as causes the formation of lesions by linking together the adjacent strands. The small changes in structure induced by this crosslinking can very profoundly affect the ability of DNA to recognize specific molecules, and can thus completely disrupt its ability to replicate and interact with the transcriptional machinery to synthesize proteins. Marszalek and his colleagues have also examined synthetic DNA to figure out the extent to which different bases are affected by UV light. They conclude that the changes in the force profile of viral DNA exposed to UV light are due to the local unwinding of the double helix in some regions arising from the massive formation of crosslinked structures.

... more about:
»DNA »Marszalek »changes

“These are the first measurements that establish a relationship between DNA nanomechanics and damage”, said Marszalek. He believes that this work paves the way for using stretch—release force spectroscopy measurements in DNA diagnostics.

Author: Piotr E. Marszalek, Duke University (USA), http://www.mems.duke.edu/faculty/marszalek/index.php

Title: Nanomechanical Fingerprints of UV Damage To DNA

Small 2007, 3, No. 5, 809–813, doi: 10.1002/smll.200600592

About Small: Micro and Nano: No small Matter. Science at the nano- and microscale is currently receiving enormous wordwide interest. Published by Wiley-VCH, Small provides the very best forum for experimental and theoretical studies of fundamental and applied interdisciplinary research at these dimensions. Read an attractive mix of peer-reviewed Communications, Reviews, Concepts, Highlights, Essays, and Full Papers.

| Small
Further information:
http://pressroom.small-journal.com
http://www.mems.duke.edu/faculty/marszalek/index.php

Further reports about: DNA Marszalek changes

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>