Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Common algae helps illustrate mammalian brain electrical circuitry

Mice whose brain cells respond to a flash of light are providing insight into the complexities of the sense of smell and may ultimately yield a better understanding of how the human brain works.

Investigators at Duke University Medical Center and the Howard Hughes Medical Institute have engineered a strain of mice whose olfactory brain cells "fire" when exposed to light. This was accomplished by inserting into the cells a gene naturally present in green algae that "turns on" when exposed to light and enables the algae to swim toward the light.

When the researchers shined light on the areas of the brain involved in smell, they could follow in real time what areas of the brain were reacting and where the signals went by seeing differences in electrical current that indicated the presence of the algae gene.

"This work provides a new method in live animals that will define the experimental approach for studying of mammalian neural circuitry in the coming decade," said Michael Ehlers, M.D., Ph.D., a Duke neurobiologist and Howard Hughes Medical Institute investigator.

... more about:
»Algae »circuitry »mammalian

The researchers published their findings in the April 19, 2007, issue of the journal Neuron. The research was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

"This mouse model and its future variants mark the first use of genetically produced light activation in the study of the intact mammalian brain, and we believe this advance in nerve circuit mapping will be to neurobiology what microarray technology has been to genomic science -- a fundamental breakthrough," Ehlers said. Microarray technology enables scientists to screen thousands of genes at once to look for clusters of genes that may be involved in disease.

Although there are many approaches to studying how different nerve cells in the brain react to stimuli from the environment, this mouse model is the first to be able to provide real-time mapping of brain circuitry in a living, intact mammal, the researchers said.

The light-producing gene inserted into the mice is taken from the water-dwelling microorganism Chlamydomonas reinhardtii, which, as a plant, needs sunlight for photosynthesis. Tiny hairlike structures along the outside of the algae propel it toward the light. These structures are controlled by channelrhodopsin-2, a so-called "ion channel," which reacts to light by stimulating movement toward it.

While researchers previously have used channelrhodopsin-2 in a variety of experiments in cell culture, the Duke experiments mark the first time the gene controlling its action has been inserted into the genetic makeup of a living mammal, the researchers said. The mice were created by Ehlers' colleague Guoping Feng, Ph.D., assistant professor of neurobiology.

The researchers decided to test the mice first on the sense of smell, since the olfactory system not only involves complex neural circuits but also has a behavioral component.

"The perception of smell is quite complex," Ehlers said. "The brain can decode thousands of smells that enter the nose, discriminating even the slightest scent and often conjuring up vivid memories. So we wanted to know how the brain decodes the presence of these chemicals in the air and turn them into a perception. It's still quite mysterious."

Ehlers said that even though these experiments shed new light on the inner workings of the olfactory system, their greatest significance is that they provided proof of principle that this new model can be used to study a wide variety of questions involving the brain.

"There are a lot of tools that work well in simpler systems or in isolated nerve cells, but the findings are often difficult to translate into an intact mammalian brain," Ehlers said. "This new model opens up whole new avenues for study. We may reach a future where brain injuries, spinal cord damage, neuron loss in Alzheimer’s disease, or even depression are treated by fiber optics delivering light to genetically defined populations of nerve cells.

Richard Merritt | EurekAlert!
Further information:

Further reports about: Algae circuitry mammalian

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>