Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common algae helps illustrate mammalian brain electrical circuitry

20.04.2007
Mice whose brain cells respond to a flash of light are providing insight into the complexities of the sense of smell and may ultimately yield a better understanding of how the human brain works.

Investigators at Duke University Medical Center and the Howard Hughes Medical Institute have engineered a strain of mice whose olfactory brain cells "fire" when exposed to light. This was accomplished by inserting into the cells a gene naturally present in green algae that "turns on" when exposed to light and enables the algae to swim toward the light.

When the researchers shined light on the areas of the brain involved in smell, they could follow in real time what areas of the brain were reacting and where the signals went by seeing differences in electrical current that indicated the presence of the algae gene.

"This work provides a new method in live animals that will define the experimental approach for studying of mammalian neural circuitry in the coming decade," said Michael Ehlers, M.D., Ph.D., a Duke neurobiologist and Howard Hughes Medical Institute investigator.

... more about:
»Algae »circuitry »mammalian

The researchers published their findings in the April 19, 2007, issue of the journal Neuron. The research was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

"This mouse model and its future variants mark the first use of genetically produced light activation in the study of the intact mammalian brain, and we believe this advance in nerve circuit mapping will be to neurobiology what microarray technology has been to genomic science -- a fundamental breakthrough," Ehlers said. Microarray technology enables scientists to screen thousands of genes at once to look for clusters of genes that may be involved in disease.

Although there are many approaches to studying how different nerve cells in the brain react to stimuli from the environment, this mouse model is the first to be able to provide real-time mapping of brain circuitry in a living, intact mammal, the researchers said.

The light-producing gene inserted into the mice is taken from the water-dwelling microorganism Chlamydomonas reinhardtii, which, as a plant, needs sunlight for photosynthesis. Tiny hairlike structures along the outside of the algae propel it toward the light. These structures are controlled by channelrhodopsin-2, a so-called "ion channel," which reacts to light by stimulating movement toward it.

While researchers previously have used channelrhodopsin-2 in a variety of experiments in cell culture, the Duke experiments mark the first time the gene controlling its action has been inserted into the genetic makeup of a living mammal, the researchers said. The mice were created by Ehlers' colleague Guoping Feng, Ph.D., assistant professor of neurobiology.

The researchers decided to test the mice first on the sense of smell, since the olfactory system not only involves complex neural circuits but also has a behavioral component.

"The perception of smell is quite complex," Ehlers said. "The brain can decode thousands of smells that enter the nose, discriminating even the slightest scent and often conjuring up vivid memories. So we wanted to know how the brain decodes the presence of these chemicals in the air and turn them into a perception. It's still quite mysterious."

Ehlers said that even though these experiments shed new light on the inner workings of the olfactory system, their greatest significance is that they provided proof of principle that this new model can be used to study a wide variety of questions involving the brain.

"There are a lot of tools that work well in simpler systems or in isolated nerve cells, but the findings are often difficult to translate into an intact mammalian brain," Ehlers said. "This new model opens up whole new avenues for study. We may reach a future where brain injuries, spinal cord damage, neuron loss in Alzheimer’s disease, or even depression are treated by fiber optics delivering light to genetically defined populations of nerve cells.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

Further reports about: Algae circuitry mammalian

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>