Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common algae helps illustrate mammalian brain electrical circuitry

20.04.2007
Mice whose brain cells respond to a flash of light are providing insight into the complexities of the sense of smell and may ultimately yield a better understanding of how the human brain works.

Investigators at Duke University Medical Center and the Howard Hughes Medical Institute have engineered a strain of mice whose olfactory brain cells "fire" when exposed to light. This was accomplished by inserting into the cells a gene naturally present in green algae that "turns on" when exposed to light and enables the algae to swim toward the light.

When the researchers shined light on the areas of the brain involved in smell, they could follow in real time what areas of the brain were reacting and where the signals went by seeing differences in electrical current that indicated the presence of the algae gene.

"This work provides a new method in live animals that will define the experimental approach for studying of mammalian neural circuitry in the coming decade," said Michael Ehlers, M.D., Ph.D., a Duke neurobiologist and Howard Hughes Medical Institute investigator.

... more about:
»Algae »circuitry »mammalian

The researchers published their findings in the April 19, 2007, issue of the journal Neuron. The research was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

"This mouse model and its future variants mark the first use of genetically produced light activation in the study of the intact mammalian brain, and we believe this advance in nerve circuit mapping will be to neurobiology what microarray technology has been to genomic science -- a fundamental breakthrough," Ehlers said. Microarray technology enables scientists to screen thousands of genes at once to look for clusters of genes that may be involved in disease.

Although there are many approaches to studying how different nerve cells in the brain react to stimuli from the environment, this mouse model is the first to be able to provide real-time mapping of brain circuitry in a living, intact mammal, the researchers said.

The light-producing gene inserted into the mice is taken from the water-dwelling microorganism Chlamydomonas reinhardtii, which, as a plant, needs sunlight for photosynthesis. Tiny hairlike structures along the outside of the algae propel it toward the light. These structures are controlled by channelrhodopsin-2, a so-called "ion channel," which reacts to light by stimulating movement toward it.

While researchers previously have used channelrhodopsin-2 in a variety of experiments in cell culture, the Duke experiments mark the first time the gene controlling its action has been inserted into the genetic makeup of a living mammal, the researchers said. The mice were created by Ehlers' colleague Guoping Feng, Ph.D., assistant professor of neurobiology.

The researchers decided to test the mice first on the sense of smell, since the olfactory system not only involves complex neural circuits but also has a behavioral component.

"The perception of smell is quite complex," Ehlers said. "The brain can decode thousands of smells that enter the nose, discriminating even the slightest scent and often conjuring up vivid memories. So we wanted to know how the brain decodes the presence of these chemicals in the air and turn them into a perception. It's still quite mysterious."

Ehlers said that even though these experiments shed new light on the inner workings of the olfactory system, their greatest significance is that they provided proof of principle that this new model can be used to study a wide variety of questions involving the brain.

"There are a lot of tools that work well in simpler systems or in isolated nerve cells, but the findings are often difficult to translate into an intact mammalian brain," Ehlers said. "This new model opens up whole new avenues for study. We may reach a future where brain injuries, spinal cord damage, neuron loss in Alzheimer’s disease, or even depression are treated by fiber optics delivering light to genetically defined populations of nerve cells.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

Further reports about: Algae circuitry mammalian

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>